## Math 6130

Graduate algebra I

MWF 9am

ECST 1B21

### Book

Dummit and Foote, Abstract Algebra.

## Instructor

Math 309

303.492.7628

thiemn AT the university's state DOT edu

### Office hours

M 10-12; F 12-13; or by appointment

## Tentative schedule

**08.27–08.31;**group axioms and examples

**m.**introduction (preliminaries)

**w.**1.1, 1.3

**f.**1.2**09.05–09.07;**group homomorphisms and actions; homework 1 due

**w.**1.6

**f.**1.4, 1.7**09.10–09.14;**subgroups through actions; homework 2 due

**m.**2.2, 2.4

**w.**2.2

**f.**2.5, 3.2**09.17–09.21;**quotient groups and isomorphism theorems; homework 3 due

**m.**3.1

**w.**3.2, 4.1

**f.**3.3**09.24–09.28;**simple groups and composition series; homework 4 due

**m.**3.4

**w.**3.5

**f.**4.2**10.01–10.05;**conjugacy classes and automorphisms; homework 5 due; midterm 1

**m.**4.3

**w.**4.4

**f.**midterm 1**10.08–10.12;**Sylow Theory and simplicity of alternating groups;

**m.**4.5

**w.**4.5

**f.**4.6**10.15–10.19;**Products of groups and series; homework 6 due

**m.**5.1, 5.4

**w.**5.5

**f.**6.1**10.22–10.26;**Nilpotent groups and finite abelian groups; homework 7 due

**m.**6.1

**w.**6.1

**f.**5.2**10.29–11.02;**free groups and presentations; homework 8 due

**m.**6.2

**w.**6.3

**f.**7.1**11.05–11.09;**rings and ideals; homework 9 due

**m.**7.1, 7.2

**w.**7.3

**f.**7.4**11.12–11.16;**ring of fractions, chinese remainder theorem and PIDs; homework 10 due; midterm 2

**m.**7.5

**w.**7.6, exam handed out

**f.**exam collected, 8.2**11.26–11.30;**euclidean domains and unique factorization domains

**m.**8.1, 8.2

**w.**8.3

**f.**9.1, 9.2**12.03–12.07;**polynomial rings; homework 11 due

**m.**9.3

**w.**9.4

**f.****12.10–12.12;**conclusion; homework 12 due

**m.**9.5

**w.**

**Final;**December 19, 13:30 - 16:00.