Math 3170
Combinatorics
MWF 11am
ECCR 110
Book
M. Bona, A walk through combinatorics.
Instructor
Math 309
303.492.7628
thiemn AT the university's state DOT edu
Office hours
M 2-4, F 10-11; or by appointment
Tentative schedule
08.22–08.26; pigeonhole and induction
m. introduction
w. group work, 1.1
f. 2.108.29–09.02; basic counting and generating functions; homework 1 due
m. 3.1, 3.2, 3.3
w. group work
f. 8.1.109.07–09.09; binomial theorem and Catalan numbers; homework 2 due
w. Chapter 4
f. Chapter 409.12–09.16; bijections and set partitions; homework 3 due
m. 3.2
w. latex introduction
f. 5.209.19–09.23; Bell numbers, exponential generating functions, and integer partitions; homework 4 due
m. 5.2, 8.2
w. 5.3
f. 5.309.26–09.30; Generating functionology; homework 5 due; midterm 1
m. 8.1.2, 8.1.3
w. 8.2.2, 8.2.3
f. Midterm10.03–10.07; integer compositions and the sieve method; project 1 due
m. 8.2.2, 5.1
w. Chapter 7
f. Chapter 710.10–10.14; introduction to graph theory; homework 6 due
m. 9.1, 9.3
w. 9.1, 9.2
f. 9.410.17–10.21; trees; homework 7 due;
m. 10.1
w. 10.1
f. 10.410.24–10.28; edge-weighted or colored graphs, and adjacency matrices; homework 8 due
m. 10.2
w. 10.3
f. 11.1, 11.210.31–11.04; matching problems; homework 9 due
m. 11.3
w.
f.11.07–11.11; Ramsey theory and planar graphs; homework 10 due; project 2 due
m. Chapter 13
w. Chapter 13
f. 12.111.14–11.17; Turan's Theorem and extremal graph theory; homework 11 due; midterm 2
m. Class overview
w. Turan's Theorem, exam handed out
f. exam collected, writing workshop11.28–12.02; Posets and the Moebius function
m. 16.1
w. 16.2
f. 16.212.05–12.09; topics; homework 12 due; project 3 due
Final; December 14, 19:30-22:00