Combinatorics

Math 3170

Combinatorics
MWF 11am
ECCR 110

Book

M. Bona, A walk through combinatorics.

Instructor

Nat Thiem

Math 309
303.492.7628
thiemn AT the university's state DOT edu

Office hours

M 2-4, F 10-11; or by appointment

Tentative schedule

  • 08.22–08.26; pigeonhole and induction
    m. introduction
    w. group work, 1.1
    f. 2.1

  • 08.29–09.02; basic counting and generating functions; homework 1 due
    m. 3.1, 3.2, 3.3
    w. group work
    f. 8.1.1

  • 09.07–09.09; binomial theorem and Catalan numbers; homework 2 due
    w. Chapter 4
    f. Chapter 4

  • 09.12–09.16; bijections and set partitions; homework 3 due
    m. 3.2
    w. latex introduction
    f. 5.2

  • 09.19–09.23; Bell numbers, exponential generating functions, and integer partitions; homework 4 due
    m. 5.2, 8.2
    w. 5.3
    f. 5.3

  • 09.26–09.30; Generating functionology; homework 5 due; midterm 1
    m. 8.1.2, 8.1.3
    w. 8.2.2, 8.2.3
    f. Midterm

  • 10.03–10.07; integer compositions and the sieve method; project 1 due
    m. 8.2.2, 5.1
    w. Chapter 7
    f. Chapter 7

  • 10.10–10.14; introduction to graph theory; homework 6 due
    m. 9.1, 9.3
    w. 9.1, 9.2
    f. 9.4

  • 10.17–10.21; trees; homework 7 due;
    m. 10.1
    w. 10.1
    f. 10.4

  • 10.24–10.28; edge-weighted or colored graphs, and adjacency matrices; homework 8 due
    m. 10.2
    w. 10.3
    f. 11.1, 11.2

  • 10.31–11.04; matching problems; homework 9 due
    m. 11.3
    w.
    f.

  • 11.07–11.11; Ramsey theory and planar graphs; homework 10 due; project 2 due
    m. Chapter 13
    w. Chapter 13
    f. 12.1

  • 11.14–11.17; Turan's Theorem and extremal graph theory; homework 11 due; midterm 2
    m. Class overview
    w. Turan's Theorem, exam handed out
    f. exam collected, writing workshop

  • 11.28–12.02; Posets and the Moebius function
    m. 16.1
    w. 16.2
    f. 16.2

  • 12.05–12.09; topics; homework 12 due; project 3 due

  • Final; December 14, 19:30-22:00