Discrete Mathematics

Math 2001

Discrete Mathematics
MWF 1pm
ECCR 108

Book

R. Hammack, Book of proof.

Instructor

Nat Thiem

Math 309
303.492.7628
thiemn AT the university's state DOT edu

Office hours

M 2-4, F 10-11; or by appointment

Tentative schedule

  • 08.22–08.26; Introduction and set theory
    m. introduction
    w. group work
    f. 5.3, 1.1

  • 08.29–09.02; Subsets and set operations; PHW1 due, WHW1 due
    m. 1.3, 1.4, 1.5
    w. 1.6, 1.7
    f. 1.2

  • 09.07–09.09; Logic and truth tables; PHW2 due
    m. no class
    w. 4.1, 2,1,
    f. 2.2, 2.3, 2.5, 2.6

  • 09.12–09.16; Basics of proof; PHW3 due
    m. 2.7
    w. 4.2, 4.3,
    f. 2.10, 5.1, 6.1

  • 09.19–09.23; Principles of counting; PHW4 due
    m. 1.3, 1.4
    w. 3.1
    f. group work

  • 09.26–09.30; Group work; PWH5 due; midterm 1
    m. group work
    w. group work
    f. midterm

  • 10.03–10.7; Induction, lists and subsets; WHW2 due
    m. 10.0
    w. 10.0
    f. 3.1, 3.2, 3.3

  • 10.10–10.14; Indistinguishable elements; PHW6 due
    m. 10.0, group work
    w. 3.4
    f.

  • 10.17–10.21; Probability, strong induction and recursive sequences; PHW7 due, WHW3 due
    m. 10.1
    w. 10.3
    f. 10.3

  • 10.24–10.28; Recursive sequences, functions and relations; PHW8 due
    m. group work
    w.
    f. 1.2, 11.0

  • 10.31–11.4; Relations and equivalence relations; PHW9 due
    m. 1.2, 11.1, 11.2
    w. 11.2, 5.2, 7.1
    f. 11.3, 11.4

  • 11.07–11.11; Set partitions and functions; PHW10 due
    m. 11.3, 11.5
    w. 12.1
    f. 12.2

  • 11.14–11.18; Invertibility and pre-images; PHW11 due; midterm 2
    m. 7.2, 12.4, 12.5
    w. 12.6, exam passed out
    f. exam collected

  • 11.28–12.02; Functions and the pigeonhole principle;
    m. group work
    w. 12.3
    f.

  • Final; December 12, 16:30 - 19:00.