Math 8174: Homework 6

Due: November 19, 2010

1. For $\mathfrak{g}=\mathfrak{s p}_{4}(\mathbb{C})$ and $\lambda=2 \omega_{\alpha}+3 \omega_{\beta}$, compute
(a) $\Lambda(L(\lambda))$,
(b) For each $\mu \in \Lambda(L(\lambda))$, bound the dimension $\operatorname{dim}\left(L(\lambda)_{\mu}\right)$.
2. Let $\lambda \in P^{+}$. Show that 0 is a weight of $L(\lambda)$ if and only if $\lambda \in Q$.
3. If V and U are two \mathfrak{g}-modules, then $U \otimes V$ is the \mathfrak{g}-module given by

$$
x \cdot(u \otimes v)=(x \cdot u) \otimes v+u \otimes(x \cdot v) .
$$

(a) Show that $\Lambda(L(\lambda) \otimes L(\mu))=\Lambda(L(\lambda))+\Lambda(L(\mu))$.
(b) Show that

$$
\operatorname{dim}\left((L(\lambda) \otimes L(\mu))_{\nu+\nu^{\prime}}\right)=\sum_{\gamma+\gamma^{\prime}=\nu+\nu^{\prime}} \operatorname{dim}\left(L(\lambda)_{\gamma}\right) \operatorname{dim}\left(L(\mu)_{\gamma^{\prime}}\right) .
$$

See page two for B_{2} paper.

