Math 8174: Homework 5

Due: November 3, 2010

- 1. We saw that one can obtain the roots Φ of a Lie algebra from knowledge only of the Dynkin diagram Γ . Do this explicitly for the root system of type D_4 .
- 2. Prove that the subspace $M \subseteq \mathfrak{g} \oplus \mathfrak{g}'$ from the isomorphism theorem proof is in fact equal to \mathfrak{d} with the correct choices of $e_{\beta} \in \mathfrak{g}^{\beta}$ and $e_{\beta'} \in (\mathfrak{g}')^{\beta'}$.
- 3. Show that for simple Lie algebras R^{\vee} is isomorphic to R unless \mathfrak{g} is of type B or C in which case R^{\vee} switches between the two.
- 4. Show that $U(\mathfrak{g})$ has no zero divisors.