Name_____

Math 8174: Homework 3

Due: October 6, 2010

- 1. Let \mathfrak{g} be a semi-simple Lie algebra.
 - (a) Without using Weyl's Theorem, prove that $\mathfrak{sl}_2(\mathbb{C})$ -modules are completely reducible.
 - (b) For $\alpha, \beta \in \Phi$, consider the $\mathfrak{sl}_2(\alpha)$ -module

$$V_{\alpha}^{\beta} = \mathfrak{g}^{\beta - p\alpha} \oplus \mathfrak{g}^{\beta - (p-1)\alpha} \oplus \cdots \oplus \mathfrak{g}^{\beta + q\alpha}$$

where p, q are minimal such that $\beta - (p+1)\alpha, \beta + (q+1)\alpha \notin \Phi$. Prove that V_{α}^{β} is irreducible.

- 2. Let char(\mathbb{F}) = p > 0. Show that the $\mathfrak{sl}_2(\mathbb{F})$ -module V_n is irreducible if and only if n < p.
- 3. For $\mathfrak{g} = \mathfrak{o}_n(\mathbb{C})$ or $\mathfrak{g} = \mathfrak{sp}_{2n}(\mathbb{C})$, find the angles that occur between the roots.
- 4. If $R \subseteq E$ is a root system, show that

$$R^{\vee} = \{ \alpha^{\vee} \mid \alpha \in \Phi \}$$

is a root system. Then show that there exist two root systems R and R^{\vee} with bases that are fundamentally different.

Hint: For the last part work in \mathbb{R}^n for $n \geq 3$.