Math 8174: Homework 2

Due: September 22, 2010

- 1. For $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ and either $\mathfrak{g} = \mathfrak{sp}_{2n}(\mathbb{C})$ or $\mathfrak{g} = \mathfrak{o}_n(\mathbb{C})$ do the following:
 - (a) Find a Cartan subalgebra \mathfrak{h} .
 - (b) Find a basis of \mathfrak{g} compatible with the Cartan decomposition of \mathfrak{g} with respect to \mathfrak{h} (this requires finding the decomposition).
- 2. Let \mathfrak{g} be a simple Lie algebra.
 - (a) Show that if (·, ·) : g⊗g → C is a symmetric, nondegenerate, bilinear form such that ([x, y], z) = (x, [y, z]), then there exists λ ∈ C such that κ(·, ·) = λ(·, ·). Hint: Study a composition of linear transformations g → g* → g.
 - (b) Assuming that $\mathfrak{sl}_n(\mathbb{C})$ is simple show that

$$\kappa(x,y) = 2n \operatorname{tr}(xy), \quad \text{for } x, y \in \mathfrak{sl}_n(\mathbb{C}).$$

- 3. Show that if \mathfrak{g} is a semi-simple Lie algebra, then $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$.
- 4. Show that if \mathfrak{g} is solvable, then

$$\kappa(x, y) = 0,$$
 for all $x, y \in \mathfrak{g}$.