Math 8174: Homework 1

Due: September 8, 2010

- 1. Find the tangent space to $\mathrm{SL}_n(\mathbb{R})$ as an explicit subspace of $\mathfrak{gl}_n(\mathbb{R})$.
- 2. Find the tangent space to either $O_n(\mathbb{R})$ or $\operatorname{Sp}_{2n}(\mathbb{R})$ as an explicit subspace of $\mathfrak{gl}_n(\mathbb{R})$.
- 3. This problem classifies all dimension 3 Lie algebras \mathfrak{g} with dim $([\mathfrak{g},\mathfrak{g}]) = 2$.
 - (a) Show that $[\mathfrak{g}, \mathfrak{g}]$ is commutative.
 - (b) If $x \in \mathfrak{g}$ is such that $\mathfrak{g} = \mathbb{C}$ -span $\{x\} + [\mathfrak{g}, \mathfrak{g}]$, then show that $\mathrm{ad}_x : [\mathfrak{g}, \mathfrak{g}] \to [\mathfrak{g}, \mathfrak{g}]$ is an isomorphism.
 - (c) Classify all the dimension 3 Lie algebras \mathfrak{g} with dim $([\mathfrak{g},\mathfrak{g}]) = 2$.

Hint: For (c), split into cases depending on whether ad_x is diagonalizable or not.

- 4. Show that Lie's Theorem fails for fields of characteristic p > 0. Hint: An example in two dimensions works.
- 5. The Virasoro Lie algebra \mathfrak{v} is given by

$$\mathfrak{v} = \mathbb{C}\operatorname{-span}\{v_n \mid n \in \mathbb{Z}\},\$$

with

$$[v_m, v_n] = (n-m)v_{m+n}.$$

- (a) Show that \mathfrak{v} is generated as a Lie algebra by two elements,
- (b) Show that \mathfrak{v} has no nonzero, proper ideal (ie. it is simple).