Math 6250: Homework 5

- 1. (17.2) Prove that if R is local, then every finitely generated projective module is free.
- 2. (18.3) Let \mathbb{F} be a field, and

$$\mathfrak{b}_n = \{ b \in M_n(\mathbb{F}) \mid b_{ji} = 0, 1 \le i < j \le n \} \subseteq M_n(\mathbb{F}).$$

Show that $\mathfrak{b}_n M_n(\mathbb{F})$ is an injective envelope of $\mathfrak{b}_n \mathfrak{b}_n$.

- 3. (19.7) Let $_{R}M$ and $M^{*} = \text{Hom}_{R}(M, R)$.
 - (a) Show that $M \otimes_{\mathbb{Z}} M^*$ is a left $R \otimes_{\mathbb{Z}} R^{\text{op}}$ -module.
 - (b) If $_{R}P$ is finitely generated projective, then $_{R\otimes_{\mathbb{Z}}R^{\mathrm{op}}}(P\otimes_{\mathbb{Z}}P^{*})$ is finite generated projective.
 - (c) If $_{R}G$ is a generator, then $_{R\otimes_{\mathbb{Z}}R^{\mathrm{op}}}(G\otimes_{\mathbb{Z}}G^{*})$ is a generator.
- 4. (20.3) Let R, S be rings and $\phi: R \to S$ a homomorphism. Define a functor $T_{\phi}: {}_{S}\mathbf{mod} \to {}_{R}\mathbf{mod}$ by

$$\begin{array}{cccc} R \times T_{\phi}({}_{S}M) & \longrightarrow & T_{\phi}({}_{S}M) \\ (r,m) & \mapsto & \phi(r)m \end{array} \quad \text{ and } & \begin{array}{cccc} \operatorname{Hom}_{S}(M,N) & \longrightarrow & \operatorname{Hom}_{R}(T_{\phi}(M),T_{\phi}(N)) \\ \theta & \mapsto & T_{\phi}(\theta):T_{\phi}(M) {\rightarrow} T_{\phi}(N) \\ m & \mapsto \theta(m). \end{array}$$

We may similarly define $T_{\phi} : \mathbf{mod}_S \to \mathbf{mod}_R$, written as $M_S \mapsto (M_S T_{\phi})$.

- (a) Show that the functors $T_{\phi}(S) \otimes_S \cdot \cong T_{\phi} \cong \operatorname{Hom}_S((ST_{\phi}), \cdot)$.
- (b) Show $((ST_{\phi}) \otimes_R \cdot) \circ T_{\phi} \cong 1 \cong \operatorname{Hom}_R(T_{\phi}(S), \cdot) \circ T_{\phi}$ if ϕ is surjective.
- 5. Let $G \subseteq H$ be finite groups with a surjective homomorphism $\pi : H \to G$.
 - (a) Find $_{\mathbb{C}H}W_{\mathbb{C}G} \subseteq \mathbb{C}H$ explicitly so that

$$\operatorname{Inf}_{\mathbb{C}G}^{\mathbb{C}H}(_{\mathbb{C}G}N) \cong W \otimes_{\mathbb{C}G} N.$$

(b) Find $_{\mathbb{C}G}M_{\mathbb{C}H} \subseteq \mathbb{C}H$ explicitly so that

$$\operatorname{Inf}_{\mathbb{C}G}^{\mathbb{C}H}(\mathbb{C}GN) \cong \operatorname{Hom}_{\mathbb{C}G}(M,N).$$

(c) Give the isomorphism $W \otimes_{\mathbb{C}G} N \cong \operatorname{Hom}_{\mathbb{C}G}(M, N)$.