Math 6250: Homework 4

- 1. (12.2) Prove that if $M = \bigoplus_{i \in \mathcal{I}} M^{(i)}$, complements direct summands, then $M^{(i)}$ is indecomposable for $i \in \mathcal{I}$.
- 2. (12.3) Consider $\mathbb{R}^{\mathcal{I}}$ for an infinite set \mathcal{I} .
 - (a) Show that the regular module does not have an indecomposable decomposition.
 - (b) For $t \in \mathbb{R}$, let $c_t : \mathcal{I} \to \mathbb{R}$ be given by $c_t(r) = t$ for all $r \in \mathcal{I}$. Show that $\mathbb{R}^{\mathcal{I}}$ has an indecomposable decomposition as a $K = \{c_t \mid t \in \mathbb{R}\}$ -module.
 - (c) Give an example of an indecomposable K-direct summand of $\mathbb{R}^{\mathcal{I}}$ that is not an $\mathbb{R}^{\mathcal{I}}$ -direct summand
- 3. (12.10) Consider the \mathbb{Z} -module $\mathbb{Z} \oplus \mathbb{Z}$.
 - (a) Show that all indecomposible decompositions are equivalent.
 - (b) Find a maximal direct summand that is not complemented by the decomposition $\mathbb{Z}(1,1) \oplus \mathbb{Z}(1,2)$.
- 4. (15.1) Compute the Jacobson radical of each of the following rings:
 - (a) \mathbb{Z}
 - (b) \mathbb{Z}_n
 - (c) The ring of $n \times n$ upper triangular matrices over a field \mathbb{F} .