Math 6250: Homework 3

- 1. Let D_{2r} be the dihedral group of order 2r. Completely classify the irreducible D_{2r} -modules. Hints: All irreducible D_{2r} -modules have dimension ≤ 2 . Treat r even and r odd separately.
- 2. Let $n \in \mathbb{Z}_{\geq 1}$. Let λ be a partition of n. Let

 $V^{\lambda} = \mathbb{C}\operatorname{-span}\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$

For $i \in \{1, 2, ..., n - 1\}$, define

$$s_i v_T = \begin{cases} v_{s_i(T)}, & \text{if } s_i(T) \text{ is standard,} \\ v_T, & \text{otherwise.} \end{cases}$$

Is V^{λ} an S_n -module under this action? If so, what is its decomposition into irreducibles?

3. (8.6 from book) Let $_RM$ and $S = \operatorname{End}_R(M)$. If $e \in S$ is an idempotent, show that

$$\operatorname{Tr}_M(Me) = (Me)S$$
 and $\operatorname{Rej}_M(Me) = l_M(Se)$

- 4. (8.10 from book) Let \mathfrak{b}_n be the ring of uppertriangular matrices over a field \mathbb{F} . Show that
 - (a) $\operatorname{Tr}_{\mathfrak{b}_n}(\hat{\mathfrak{b}}_n) = \{a \in \mathfrak{b}_n \mid a_{ij} = 0, i \ge 2\},\$
 - (b) $\operatorname{Rej}_{\mathfrak{b}_n}(\hat{\mathfrak{b}}_n) = \{ a \in \mathfrak{b}_n \mid a_{ii} = 0, 1 \le i \le n \}.$
- 5. (9.12 from book) Show that a product $\prod_{\alpha \in \mathcal{I}} V^{(i)}$ with $V^{(i)} \in \hat{R}$ is not necessarily completely reducible.