Math 6250: Homework 3

1. Let $D_{2 r}$ be the dihedral group of order $2 r$. Completely classify the irreducible $D_{2 r}$-modules. Hints: All irreducible $D_{2 r}$-modules have dimension ≤ 2. Treat r even and r odd separately.
2. Let $n \in \mathbb{Z}_{\geq 1}$. Let λ be a partition of n. Let

$$
V^{\lambda}=\mathbb{C}-\operatorname{span}\left\{v_{T} \mid T \text { a standard tableau of shape } \lambda\right\} .
$$

For $i \in\{1,2, \ldots, n-1\}$, define

$$
s_{i} v_{T}= \begin{cases}v_{s_{i}(T)}, & \text { if } s_{i}(T) \text { is standard } \\ v_{T}, & \text { otherwise }\end{cases}
$$

Is V^{λ} an S_{n}-module under this action? If so, what is its decomposition into irreducibles?
3. (8.6 from book) Let ${ }_{R} M$ and $S=\operatorname{End}_{R}(M)$. If $e \in S$ is an idempotent, show that

$$
\operatorname{Tr}_{M}(M e)=(M e) S \quad \text { and } \quad \operatorname{Rej}_{M}(M e)=l_{M}(S e)
$$

4. (8.10 from book) Let \mathfrak{b}_{n} be the ring of uppertriangular matrices over a field \mathbb{F}. Show that
(a) $\operatorname{Tr}_{\mathfrak{b}_{n}}\left(\hat{\mathfrak{b}}_{n}\right)=\left\{a \in \mathfrak{b}_{n} \mid a_{i j}=0, i \geq 2\right\}$,
(b) $\operatorname{Rej}_{\mathfrak{b}_{n}}\left(\hat{\mathfrak{b}}_{n}\right)=\left\{a \in \mathfrak{b}_{n} \mid a_{i i}=0,1 \leq i \leq n\right\}$.
5. (9.12 from book) Show that a product $\prod_{\alpha \in \mathcal{I}} V^{(i)}$ with $V^{(i)} \in \hat{R}$ is not necessarily completely reducible.
