Math 6140: Homework 9

- $1. \ 13.6: \ 6, \ 8, \ 11, \ 12$
- $2. \ 14.1: \ 5, \ 6, \ 8, \ 10$
- 3. Suppose \mathbb{K}/\mathbb{F} is Galois of degree p and suppose $\mathbb{K} = \mathbb{F}(\alpha)$ with $\alpha^p \in \mathbb{F}$. Show that \mathbb{K} contains a primitive pth root of unity, and when p is prime \mathbb{K} has all of them.
- 4. Use $e^{2\pi i/7} + e^{12\pi i/7}$ to find an explicit polynomial $f(x) \in \mathbb{Q}[x]$ such that the Galois group of its splitting field over \mathbb{Q} has 3 elements.