Math 6140: Homework 8

1. $13.4: 4,5,6$
2. $13.5: 3,4,7$
3. Let $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{L}$. Suppose $\alpha \in \mathbb{L}$ is algebraic over \mathbb{F} and let $f=\min _{\alpha, \mathbb{K}}(x)$. Show that the roots in \mathbb{L} and coefficients of f are algebraic over \mathbb{F}.
4. Suppose $x^{p}-1$ factors completely over a field \mathbb{F} with p prime. Show that for each $a \in \mathbb{F}$, either $x^{p}-a$ factors completely in $\mathbb{F}[x]$ or is irreducible in $\mathbb{F}[x]$ (Hint: note that the roots of $x^{p}-a$ all have the same degree).
5. Suppose $\operatorname{char}(\mathbb{F})=p>0$, and \mathbb{K} / \mathbb{F} is an algebraic extension. Show that the following are equivalent.
(a) The only elements in \mathbb{K} that are roots of a separable polynomial in $\mathbb{F}[x]$ are in \mathbb{F}.
(b) If $\alpha \in \mathbb{K}$, then there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\alpha^{p^{n}} \in \mathbb{F}$.
