Math 6140: Homework 8

- 1. 13.4: 4, 5, 6
- 2. 13.5: 3, 4, 7
- 3. Let $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{L}$. Suppose $\alpha \in \mathbb{L}$ is algebraic over \mathbb{F} and let $f = \min_{\alpha, \mathbb{K}}(x)$. Show that the roots in \mathbb{L} and coefficients of f are algebraic over \mathbb{F} .
- 4. Suppose $x^p 1$ factors completely over a field \mathbb{F} with p prime. Show that for each $a \in \mathbb{F}$, either $x^p a$ factors completely in $\mathbb{F}[x]$ or is irreducible in $\mathbb{F}[x]$ (Hint: note that the roots of $x^p a$ all have the same degree).
- 5. Suppose $\operatorname{char}(\mathbb{F}) = p > 0$, and \mathbb{K}/\mathbb{F} is an algebraic extension. Show that the following are equivalent.
 - (a) The only elements in \mathbb{K} that are roots of a separable polynomial in $\mathbb{F}[x]$ are in \mathbb{F} .
 - (b) If $\alpha \in \mathbb{K}$, then there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\alpha^{p^n} \in \mathbb{F}$.