Math 6140: Homework 4

1. 11.4: 4
2. Let $A \in M_{n \times n}(\mathbb{F})$. For $I, J \subseteq\{1,2, \ldots, n\}$, let $A_{I, J} \in M_{|I| \times|J|}(\mathbb{F})$ be the submatrix of A obtained by taking only the rows in I and the columns in J. A matrix $A \in$ $M_{n \times n}(\mathbb{Z})$ is totally positive, if for all $I, J \subseteq\{1,2, \ldots, n\}$ with $1 \leq|I|=|J| \leq n$, we have

$$
\operatorname{det}\left(A_{I, J}\right)>0
$$

(a) Show that totally positive matrices can be similar to non-totally positive matrices.
(b) Classify all totally positive matrices in $M_{2 \times 2}(\mathbb{Z})$ (give conditions on the coordinates that guarantee total positivity).
3. 12.1: $2,5,6,9,11,12,14$

