Math 4140: Homework 8

Due: March 16, 2011

Required

1. For the following shapes, determine the dimensions of the corresponding S_n -modules.

(a)

n-2 boxes

(b)

2. Suppose an S_7 -module V contains a vector v such that

$$v * m_1 = 0, v * m_2 = -v, v * m_2 = -2v, v * m_3 = v, v * m_4 = 2v,$$

 $v * m_5 = -3v, v * m_6 = 0, v * m_7 = -v.$

Identify an irreducible submodule of V containing this vector (your answer should be in terms of a specific integer partition).

3. Recall that the permutation module V of S_n has a module decomposition

 $V = \mathbb{C}\operatorname{-span}\{v_1 + v_2 + \dots + v_n\} \oplus \{a_1v_1 + a_2v_2 + \dots + a_nv_n \mid a_1 + a_2 + \dots + a_n = 0\}.$

We know that

$$\mathbb{C}\operatorname{-span}\{v_1+v_2+\cdots+v_n\}\cong S_n^{\square\square\square\cdots\square}$$

This problem seeks to understand the other piece $W_n = \{a_1v_1 + a_2v_2 + \cdots + a_nv_n \mid a_1 + a_2 + \cdots + a_n = 0\}.$

- (a) Let n = 4. What is the dimension d of W_4 ?
- (b) Find d linearly independent vectors $w \in W_4$ such that

$$w * m_k = c_k w$$

for all $1 \le k \le 4$ and for some $c_k \in \mathbb{C}$. That is, find d simultaneous eigenvectors for the Murphy-Jucys elements.

(c) Use these eigenvectors to give you an isomorphism between W_4 and an irreducible module of S_4 .