Math 4140: Homework 8

Due: March 16, 2011

Required

1. For the following shapes, determine the dimensions of the corresponding S_{n}-modules.
(a)

(b)

2. Suppose an S_{7}-module V contains a vector v such that

$$
\begin{gathered}
v * m_{1}=0, v * m_{2}=-v, v * m_{2}=-2 v, v * m_{3}=v, v * m_{4}=2 v, \\
v * m_{5}=-3 v, v * m_{6}=0, v * m_{7}=-v .
\end{gathered}
$$

Identify an irreducible submodule of V containing this vector (your answer should be in terms of a specific integer partition).
3. Recall that the permutation module V of S_{n} has a module decomposition

$$
V=\mathbb{C}-\operatorname{span}\left\{v_{1}+v_{2}+\cdots+v_{n}\right\} \oplus\left\{a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \mid a_{1}+a_{2}+\cdots+a_{n}=0\right\} .
$$

We know that

$$
\mathbb{C}-\operatorname{span}\left\{v_{1}+v_{2}+\cdots+v_{n}\right\} \cong S_{n}^{\square \square \square .}
$$

This problem seeks to understand the other piece $W_{n}=\left\{a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \mid\right.$ $\left.a_{1}+a_{2}+\cdots+a_{n}=0\right\}$.
(a) Let $n=4$. What is the dimension d of W_{4} ?
(b) Find d linearly independent vectors $w \in W_{4}$ such that

$$
w * m_{k}=c_{k} w
$$

for all $1 \leq k \leq 4$ and for some $c_{k} \in \mathbb{C}$. That is, find d simultaneous eigenvectors for the Murphy-Jucys elements.
(c) Use these eigenvectors to give you an isomorphism between W_{4} and an irreducible module of S_{4}.

