Math 4140: Homework 5

Due: February 16, 2011

Required

- 1. Consider the infinite group \mathbbm{Z} under addition.
 - (a) Show that

$$\begin{array}{rcccc}
\rho : & \mathbb{Z} & \longrightarrow & \operatorname{GL}_2(\mathbb{C}) \\
& m & \mapsto & \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}
\end{array}$$

is a representation of \mathbb{Z} .

- (b) Let V be the corresponding module. Show that the conclusion of Maschke's theorem does not apply to some nonzero proper submodule U ⊆ V.
 Remark: A module which is not irreducible, but does not satisfy the conclusion of Maschke's Theorem is called *indecomposible*.
- 2. (a) Classify the irreducible modules of $C_m \times C_n$ where $m, n \in \mathbb{Z}_{\geq 1}$.
 - (b) Generalize (a) by using the fundamental theorem of abelian groups to classify all the irreducible modules of an arbitrary abelian group G.
- 3. Recall, that $C_4 \subseteq D_8$. Use Maschke's Theorem to decompose the regular module $\mathbb{C}D_8$ as a sum of irreducible C_4 -modules (you should have 8 irreducible modules).
- 4. For G-modules U and V, define

 $\operatorname{Hom}_G(U, V) = \{\varphi : U \to V \mid \varphi \text{ is a } G \text{-module homomorphism} \}.$

- (a) Show that $\operatorname{Hom}_G(U, V)$ can be thought of as a vector space by defining an appropriate addition and scalar multiplication,
- (b) Give an explicit description of the vector space $\operatorname{Hom}_G(V, V)$ for the case when V is irreducible.

Recommended

Note that recommended problems come from our book. They have answers in the back (I will not grade them, though I am happy to talk about them).

- 1. Chapter 8: 4, 7
- 2. Chapter 9: 1, 2