Math 4140: Homework 4

Due: February 9, 2011

Required

1. Consider the two two-dimensional S_3 -module given by $V = \mathbb{C}$ -span $\{v_1, v_2\}$, where

$$v_1 * s_1 = -v_1$$
, $v_2 * s_1 = v_2$, $v_1 * s_2 = \frac{1}{2}v_1 + \frac{3}{2}v_2$, $v_2 * s_2 = \frac{1}{2}v_1 - \frac{1}{2}v_2$.

and $U = \mathbb{C}$ -span $\{u_1, u_2\}$ given by

$$u_1 * s_1 = u_1, \quad u_2 * s_1 = -u_2, \quad u_1 * s_2 = -\frac{1}{2}u_1 - \frac{3}{2}u_2, \quad u_2 * s_2 = -\frac{1}{2}u_1 + \frac{1}{2}u_2.$$

- (a) Find an explicit S_3 -module isomorphism between the two modules (be sure to justify that it is a S_3 -module homomorphism).
- (b) Find a matrix $a \in GL_2(\mathbb{C})$ such that

$$(g\rho_U) = a^{-1}(g\rho_V)a, \quad \text{for } g \in G.$$

- 2. Prove that if G is a finite group, then G has infinitely many different (nonequivalent) representations.
- 3. Prove that the characteristic of any field \mathbb{F} is either a prime number or ∞ .
- 4. (Harder) Decompose $\mathbb{C}S_3$ into irreducible modules. Be sure to give explicit bases for the irreducible modules in terms of the usual basis of $\mathbb{C}S_3$. Specify which of the irreducible modules are isomorphic, if any.

Hint: No irreducible S_3 -module has dimension more than 2.

Recommended

Note that recommended problems come from our book. They have answers in the back (I will not grade them, though I am happy to talk about them).

- 1. Chapter 7: 1, 3
- 2. Chapter 8: 1, 3