Math 4140: Homework 1

Due: January 19, 2011

Group actions

1. Let G be a group. Consider functions

Determine whether or not either of these actions give a right action of G on itself (justify your answers).

- 2. Prove that every finite group G is isomorphic to a subgroup of S_n for some $n \in \mathbb{Z}_{\geq 1}$. Hint: First prove that the group of permutations of the set G is isomorphic to $S_{|G|}$, and then use group actions.
- 3. Consider the right action of G on

$$\mathcal{F}(G) = \{ f : G \to \mathbb{C} \}$$

given by $(f * g)(h) = f(hg^{-1})$, for $f \in \mathcal{F}(G)$, $g, h \in G$.

- (a) Show that this is indeed a group action.
- (b) Under what conditions do the orbits all have the same size?

Vector spaces

- 1. Show that $\mathcal{F}(G)$ may be viewed as a vector space. What is its dimension? Find an explicit basis for $\mathcal{F}(G)$.
- 2. Suppose $\phi: U \to V$ is a linear transformation between vector spaces U and V. Suppose \mathcal{B}_U and \mathcal{B}'_U are two bases of U and \mathcal{B}_V and \mathcal{B}'_V are two bases of V. What is the relationship between the matrix a^{ϕ} corresponding to the basis \mathcal{B}_U and \mathcal{B}_V and the matrix a'^{ϕ} corresponding to the bases \mathcal{B}'_U and \mathcal{B}'_V . Your answer should be in the form of a matrix equation with explicit matrices.
- 3. Let p be prime and let \mathbb{Z}_p be the integers mod p. How many distinct bases does \mathbb{Z}_p^n have?