Math 4140: Homework 1

Due: January 19, 2011

Group actions

1. Let G be a group. Consider functions

$$
\begin{array}{ccc}
G \times G & \longrightarrow & G \\
(g, h) & \mapsto & h g
\end{array} \quad \text { and } \quad \begin{array}{cccc}
G \times G & \longrightarrow & G \\
(g, h) & \mapsto & h^{-1} g
\end{array}
$$

Determine whether or not either of these actions give a right action of G on itself (justify your answers).
2. Prove that every finite group G is isomorphic to a subgroup of S_{n} for some $n \in \mathbb{Z}_{\geq 1}$.

Hint: First prove that the group of permutations of the set G is isomorphic to $S_{|G|}$, and then use group actions.
3. Consider the right action of G on

$$
\mathcal{F}(G)=\{f: G \rightarrow \mathbb{C}\}
$$

given by $(f * g)(h)=f\left(h g^{-1}\right)$, for $f \in \mathcal{F}(G), g, h \in G$.
(a) Show that this is indeed a group action.
(b) Under what conditions do the orbits all have the same size?

Vector spaces

1. Show that $\mathcal{F}(G)$ may be viewed as a vector space. What is its dimension? Find an explicit basis for $\mathcal{F}(G)$.
2. Suppose $\phi: U \rightarrow V$ is a linear transformation between vector spaces U and V. Suppose \mathcal{B}_{U} and \mathcal{B}_{U}^{\prime} are two bases of U and \mathcal{B}_{V} and \mathcal{B}_{V}^{\prime} are two bases of V. What is the relationship between the matrix a^{ϕ} corresponding to the basis \mathcal{B}_{U} and \mathcal{B}_{V} and the matrix $a^{\prime \phi}$ corresponding to the bases \mathcal{B}_{U}^{\prime} and \mathcal{B}_{V}^{\prime}. Your answer should be in the form of a matrix equation with explicit matrices.
3. Let p be prime and let \mathbb{Z}_{p} be the integers mod p. How many distinct bases does \mathbb{Z}_{p}^{n} have?
