Math 3170: Homework 8

1. Is there a non-connected simple graph on 7 vertices with every vertex at least degree 3 ?
2. (a) Carefully state what the out-degree and in-degree of a vertex should be in a directed graph.
(b) State and prove a directed graph version of the theorem on Eulerian trails.
3. (a) Find all nonisomorphic simple graphs on 4 vertices.
(b) How many nonisomorphic arbitrary graphs are there on four vertices?
4. For which n can one partition the edges of K_{n} into subsets where each subset is the set of edges of a Hamiltonian path?
5. The n dimensional hypercube Q_{n} is the simple graph with vertices

$$
V=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in\{0,1\}^{n}\right\},
$$

and an edge between $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ if

$$
\#\left\{1 \leq i \leq n \mid a_{i}=b_{i}\right\}=n-1 .
$$

(a) How many vertices does Q_{n} have?
(b) What are the degrees of the vertices?
(c) Why is Q_{n} called a hypercube?
(d) Show that for $n \geq 2, Q_{n}$ has a closed Hamiltonian path.

