Math 3170: Homework 5

1. Show that the number of partitions of n with even part sizes is the same as the number of partitions of n where each part appears an even number of times.
2. A self-conjugate partition is a partition (viewed as a stack of boxes) such that if you reflect across the $y=-x$ axis, you get the same stack of boxes. Let

$$
\begin{aligned}
d o_{n} & =\#\{\text { distinct partitions of } n \text { with odd part sizes }\} \\
s c_{n} & =\#\{\text { self conjugate partitions of } n\}
\end{aligned}
$$

Show that for all $n \in \mathbb{Z}_{\geq 0}, d o_{n}=s c_{n}$.
Hint: Consider in the self-conjugate partition the boxes closest to the walls, and then the boxes 1 box away from the walls, and so on.
3. Let $p_{n, k}$ be the number of integer partitions of n into k parts. Show that

$$
p_{n, k}=p_{n-1, k-1}+p_{n-k, k} .
$$

4. (a) Let r_{n} be the number of compositions of n such that each part has size at least 2 . Find a recursive formula in terms of r_{n-1} and r_{n-2} for r_{n}.
(b) If you replace partitions for compositions in (a), why does your argument cease to work?
(c) Find a closed formula for r_{n}.
5. Pick a topic for you project.
