## Math 3170: Homework 4

1. Say a sequence $a_{1}, a_{2}, \ldots, a_{2 n}$ of $n$ 's and $n-1$ 's is good if for each $1 \leq k \leq 2 n$, the sum $a_{1}+a_{2}+\cdots+a_{k} \geq 0$. Let

$$
\operatorname{se}_{n}=\#\{\operatorname{good} \text { sequences of length } 2 n\}
$$

For example,

$$
\begin{aligned}
\mathrm{se}_{3} & =\#\left\{\begin{array}{c}
(1,-1,1,-1,1,-1),(1,1,-1,-1,1,-1),(1,-1,1,1,-1,-1) \\
(1,1,1,-1,-1,-1),(1,1,-1,1,-1,-1)
\end{array}\right\} \\
& =5
\end{aligned}
$$

Show that $\mathrm{se}_{n}$ is the $n$th Catalan number by constructing a bijection between Dyck paths and good sequences.
2. Find and prove a closed formula for $S(n, 2), n \geq 2$.
3. Let $k_{1}, k_{2}, \ldots, k_{\ell}$ be positive integers such that $k_{1}+k_{2}+\cdots+k_{\ell}=n$. The multinomial coefficient $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$ is the number given by

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}=\frac{n!}{k_{1}!k_{2}!\cdots k_{\ell}!}
$$

(a) Give a description of something that $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$ counts, and prove your assertion. (In particular, this shows that multinomial coefficients are always integers).
(b) Give a counting argument to show that

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}=\binom{n-1}{k_{1}-1, k_{2}, \ldots, k_{\ell}}+\binom{n-1}{k_{1}, k_{2}-1, \ldots, k_{\ell}}+\cdots+\binom{n-1}{k_{1}, k_{2}, \ldots, k_{\ell}-1}
$$

Note that it might be helpful to review the binomial coefficient recursion.
4. A set composition of a set $S$ is a sequence of subsets $\left(S_{1}, S_{2}, \ldots, S_{\ell}\right)$ such that
(1) $S=S_{1} \cup S_{2} \cup \cdots \cup S_{\ell}$,
(2) $S_{i} \cap S_{j}=\emptyset$ for $i \neq j$.
(a) Explain how the set of set partitions of $\{1,2, \ldots, n\}$ is different from the set of set compositions of $\{1,2, \ldots, n\}$.
(b) If $C_{n}$ is the total number of set compositions of $\{1,2, \ldots, n\}$, show that

$$
C_{n}=\sum_{k=0}^{n-1}\binom{n}{k} C_{k}
$$

5. Let $r_{n}$ be the number of ways to place up to $n$ non-attacking rooks on a triangular chessboard with $n-1$ boxes on a side. For example, for $n=3$, we have

so $r_{3}=5$. Show that $r_{n}=b_{n}$ for all $n$.
Hint: Number your rows from top to bottom by 1 to $n-1$, and your columns from left to right by 2 to $n$, and think about how the coordinates of the rooks might translate into subsets.
