Math 3170: Homework 6

Due: October 17, 2012

1. (a) For which sequence

$$
\begin{aligned}
d o_{n} & =\#\{\text { distinct partitions of } n \text { with odd part sizes }\} \\
s c_{n} & =\#\{\text { self conjugate partitions of } n\}
\end{aligned}
$$

is the ordinary generating function easier to compute?
(b) Use Homework 5 to find a generating function for both.
2. For $k \in \mathbb{Z}_{\geq 1}$ compute the coefficients a_{n} in

$$
e^{k x}=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}
$$

in two ways to show that

$$
k^{n}=\sum_{\substack{m_{1}+m_{2}+\cdots+m_{k}=n \\ m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{Z} \geq 0}}\binom{n}{m_{1}, m_{2}, \ldots, m_{k}} .
$$

3. Let

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n}
$$

(a) Describe the sequence coming from the ordinary generating function

$$
\frac{A(x)}{1-x}
$$

(b) Describe the sequence coming from the exponential generating function

$$
\frac{A(x)}{1-x} .
$$

4. Give the first 3 terms of the exponential generating function

$$
e^{\frac{e^{t x}-1}{t}} .
$$

(The coefficients in your answer should be polynomials in t). These are known as t-Bell numbers.

