## Math 3170: Homework 3

Due: September 19, 2012

1. Prove

$$
3^{n}=\sum_{k=0}^{n} 2^{k}\binom{n}{k}
$$

in two different ways.
2. Prove

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

in two different ways.
3. What is the coefficient of $x^{n}$ in the power series $\sqrt[3]{1-2 x}$ ?
4. (a) What is the power series for

$$
\frac{1}{(1-x)^{2}} ?
$$

(b) Compute the first ten terms of the sequence

$$
h_{n}=h_{n-1}+h_{n-2}-h_{n-3},
$$

with $h_{0}=0, h_{1}=1, h_{2}=1$.
(c) Use generating functions to find a closed formula for $h_{n}$ (although it is easy to do so without generating functions).
5. Let $a, b, n \in \mathbb{Z}_{\geq 0}$ such that $a+b \leq n$.
(a) Show that

$$
(1-x)^{-a-1}=\sum_{j=0}^{\infty}\binom{a+j}{j} x^{j} .
$$

(b) Deduce that

$$
\binom{n+1}{a+b+1}=\sum_{k=0}^{n}\binom{k}{a}\binom{n-k}{b} .
$$

[Hint: Available.]

