Math 3170: Homework 10

Due: November 14, 2012

1. How many spanning trees are there of the complete graph K_{n} that have no vertex with degree greater than 2.
2. The distance $d(u, v)$ between two vertices u and v in a connected graph is the smallest number of edges needed to construct a path between u and v. The center of a connected graph G is the set

$$
\left\{v \in V_{G} \mid \sum_{u \in V_{G}} d(u, v) \text { is minimal }\right\} .
$$

Prove that if T is a tree, then the center of T is either a vertex or a pair of adjacent vertices.
3. Suppose a tree T has exactly one vertex of degree i for all $2 \leq i \leq m$ (all other vertices have degree 1). How many vertices does T have?
4. Let G be a connected simple graph, and let S and T be spanning trees of G.
(a) Show that if $e \in E_{S}$, then there exists $f \in E_{T}$ such that the tree S^{\prime} obtained by deleting e and adding f is a spanning tree of G.
(b) Show that there is a sequence of spanning trees

$$
S=T_{0}, T_{1}, \ldots, T_{\ell}=T
$$

such that T_{i} is obtained from T_{i-1} be removing an edge and adding another.
5. Let G_{n} be obtained from K_{n} by removing an edge. Find and prove a formula for the number of spanning trees of G_{n}.

Hint: Count the number of spanning trees of K_{n} that use the deleted edge.

