Math 3140: Homework 7

Due: Wednesday, October 23

A. Let $C_{r}=\langle x\rangle$ be the cyclic group with r elements (but written with multiplication, rather than addition). Let

$$
W_{r, n}=\left\{\begin{array}{l|l}
a \in M_{n}\left(C_{r} \cup\{0\}\right) & \begin{array}{l}
a \text { has exactly one nonzero entry } \\
\text { in every row and every column }
\end{array}
\end{array}\right\}
$$

(a) Show that $W_{r, n}$ is a group.
(b) Show that $W_{2,2} \cong D_{4}$.
(c) What groups are $W_{1, n}$ and $W_{r, 1}$ isomorphic to?
(d) What is the order of $W_{r, n}$?
B. 11.4 Suppose $|G|$ is the product of two distinct primes. Show that any proper subgroup of G must be cyclic.
11.7 Suppose $n \in \mathbb{Z}_{\geq 1}$ and m divides $2 n$. Show that D_{n} contains a group of order m.
11.8 Does A_{5} contain a subgroup of order m for every m that divides $\left|A_{5}\right|=60$?
12.4-5 Find examples of a group G and a subgroup H such that the following sets are not equivalence relations:
(a) $\{(x, y) \mid x y \in H\}$,
(b) $\left\{(x, y) \mid x y x^{-1} y^{-1} \in H\right\}$.
12.8 Let H be a subgroup of a group G.
(a) Show that if $|G|=2|H|$, then $g H=H g$ for all $g \in G$.
(b) Show that $g H=H g$ for all $g \in G$ if and only if $g h g^{-1} \in H$ for all $h \in H$, $g \in G$.
13.2. Suppose G is abelian with $|G|$ a product of distinct primes. Show that G is cyclic.
13.4. Classify the groups of order 10.

