Math 3140: Homework 8

Due: Wednesday, November 2

A. Recall, the definition of a ring from Homework 7.

- (a) Suppose R and S are rings. Give a careful definition of what you think a *ring* homomorphism should be.
- (b) Let $\varphi: R \to S$ be a ring homomorphism. Define the *kernel* of φ to be the set

$$\ker(\varphi) = \{ r \in R \mid \varphi(r) = 0 \}.$$

Show that for all $r \in R$ and $k \in \ker(\varphi)$,

$$rk, kr \in \ker(\varphi).$$

(c) An *ideal* of a ring R is a subring I such that

$$ri, ir \in I$$
 for all $i \in I, r \in R$.

Find a multiplicative function and an additive function that makes

$$R + I = \{r + I \mid r \in R\}$$

a ring.

- (d) Show that $I \subseteq R$ is an ideal if and only if there exists a ring homomorphism $\varphi: R \to S$ for some ring S such that $I = \ker(\varphi)$.
- B. 15.2 Find all normal subgroups of D_n .

15.7 Let $K \triangleleft G \times H$ be such that

$$K \cap (\{1_G\} \times H) = \{(1_G, 1_H)\} = K \cap (G \times \{1_H\}).$$

Show that K must be abelian.

15.12 Find a proper normal subgroup of A_4 . Show that any non-trivial normal subgroup H of A_5 must contain a 3-cycle, and use 14.5 to conclude that $H = A_5$, thereby proving A_5 is simple.