Math 3140: Homework 7

Due: Wednesday, October 19

A. A ring R is a set with two functions

such that

- (1) (R, +) is an abelian group,
- (2) For all $a, b, c \in R$,
 - $a \cdot (b+c) = a \cdot b + a \cdot c$,
 - $(a+b) \cdot c = a \cdot c + b \cdot c$,
 - $(a \cdot b) \cdot c = a \cdot (b \cdot c).$

Do the following

- (a) Show that $M_n(\mathbb{R})$ is a ring.
- (b) Give a definition for what you think a subring should be.
- (c) Give a definition for what you think a ring isomorphism should be.
- B. 11.4 Suppose |G| is the product of two distinct primes. Show that any proper subgroup of G must be cyclic.
 - 11.7 Suppose $n \in \mathbb{Z}_{\geq 1}$ and *m* divides 2n. Show that D_n contains a group of order *m*.
 - 11.8 Does A_5 contain a subgroup of order *m* for every *m* that divides $|A_5| = 60$?

С.

- 12.4-5 Find examples of a group G and a subgroup H such that the following sets are **not** equivalence relations:
 - (a) $\{(x, y) \mid xy \in H\},\$
 - (b) $\{(x,y) \mid xyx^{-1}y^{-1} \in H\}.$
 - 12.8 Let H be a subgroup of a group G.
 - (a) Show that if |G| = 2|H|, then gH = Hg for all $g \in G$.
 - (b) Show that gH = Hg for all $g \in G$ if and only if $ghg^{-1} \in H$ for all $h \in H$, $g \in G$.