Math 3140: Homework 7

Due: Wednesday, October 19

A. A ring R is a set with two functions

$$
\begin{aligned}
: \begin{array}{cl}
R \times R & \longrightarrow R \\
(x, y) & \mapsto x \cdot y
\end{array} \quad \text { and } \quad+: \begin{array}{cl}
R \times R & \longrightarrow R \\
(x, y) & \mapsto x+y
\end{array}
\end{aligned}
$$

such that
(1) $(R,+)$ is an abelian group,
(2) For all $a, b, c \in R$,

- $a \cdot(b+c)=a \cdot b+a \cdot c$,
- $(a+b) \cdot c=a \cdot c+b \cdot c$,
- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.

Do the following
(a) Show that $M_{n}(\mathbb{R})$ is a ring.
(b) Give a definition for what you think a subring should be.
(c) Give a definition for what you think a ring isomorphism should be.
B. 11.4 Suppose $|G|$ is the product of two distinct primes. Show that any proper subgroup of G must be cyclic.
11.7 Suppose $n \in \mathbb{Z}_{\geq 1}$ and m divides $2 n$. Show that D_{n} contains a group of order m.
11.8 Does A_{5} contain a subgroup of order m for every m that divides $\left|A_{5}\right|=60$?
C.
12.4-5 Find examples of a group G and a subgroup H such that the following sets are not equivalence relations:
(a) $\{(x, y) \mid x y \in H\}$,
(b) $\left\{(x, y) \mid x y x^{-1} y^{-1} \in H\right\}$.
12.8 Let H be a subgroup of a group G.
(a) Show that if $|G|=2|H|$, then $g H=H g$ for all $g \in G$.
(b) Show that $g H=H g$ for all $g \in G$ if and only if $g h g^{-1} \in H$ for all $h \in H$, $g \in G$.

