Math 3140: Homework 6

Due: Wednesday, October 12

A. (a) Which of the following groups are isomorphic to one-another?

 $\mathbb{Z}_{24}, \quad D_4 \times \mathbb{Z}_3, \quad D_{12}, \quad A_4 \times \mathbb{Z}_2, \quad \mathbb{Z}_2 \times D_6, \quad S_4, \quad \mathbb{Z}_{12} \times \mathbb{Z}_2.$

B. For p prime, let \mathbb{F}_p denote the set $\{0, 1, \ldots, p-1\}$ where we add **and** multiply modulo p (as opposed to \mathbb{Z}_p where we just add). Define

$$U_n(\mathbb{F}_p) = \{ a \in M_n(\mathbb{F}_p) \mid a_{jj} = 1, 1 \le j \le n, a_{ji} = 0, 1 \le i < j \le n \}.$$

This group is called the group of unipotent, uppertriangular matrices with entries in \mathbb{F}_p .

- (a) What is the order of U₃(𝔽₂)? Show that U₃(𝔽₂) is isomorphic to an already familiar group. **Remark.** The group U₃(𝔽_p) is often called the *Heisenberg group* and is useful in mathematical physics.
- (b) Show that $U_2(\mathbb{F}_p) \cong \mathbb{Z}_p$, and that if $n \ge 2$, then $U_2(\mathbb{F}_p)$ is isomorphic to a subgroup of $U_n(\mathbb{F}_p)$.
- C. 9.1 Do either of the following sets of $n \times n$ matrices form a group?
 - (a) Diagonal matrices, $\{a \in M_n(\mathbb{R}) \mid a_{ij} = 0, i \neq j, a_{ii} \neq 0\}$.
 - (b) Symmetric matrices, $\{a \in M_n(\mathbb{R}) \mid a_{ij} = a_{ji}, 1 \le i, j \le n\}$.
 - (2) Let $C_r = \langle x \rangle$ be the cyclic group with r elements (but written with multiplication, rather than addition). Let

$$W_{r,n} = \left\{ a \in M_n(C_r \cup \{0\}) \mid \begin{array}{c} a \text{ has exactly one nonzero entry} \\ \text{in every row and every column} \end{array} \right\}.$$

- (a) Show that $W_{r,n}$ is a group.
- (b) Show that $W_{2,2} \cong D_4$.
- (c) What groups are $W_{1,n}$ and $W_{r,1}$ isomorphic to?
- (d) What is the order of $W_{r,n}$?