Math 3140: Homework 6

Due: Wednesday, October 12

A. (a) Which of the following groups are isomorphic to one-another?

$$
\mathbb{Z}_{24}, \quad D_{4} \times \mathbb{Z}_{3}, \quad D_{12}, \quad A_{4} \times \mathbb{Z}_{2}, \quad \mathbb{Z}_{2} \times D_{6}, \quad S_{4}, \quad \mathbb{Z}_{12} \times \mathbb{Z}_{2}
$$

B. For p prime, let \mathbb{F}_{p} denote the set $\{0,1, \ldots, p-1\}$ where we add and multiply modulo p (as opposed to \mathbb{Z}_{p} where we just add). Define

$$
U_{n}\left(\mathbb{F}_{p}\right)=\left\{a \in M_{n}\left(\mathbb{F}_{p}\right) \mid a_{j j}=1,1 \leq j \leq n, a_{j i}=0,1 \leq i<j \leq n\right\}
$$

This group is called the group of unipotent, uppertriangular matrices with entries in \mathbb{F}_{p}.
(a) What is the order of $U_{3}\left(\mathbb{F}_{2}\right)$? Show that $U_{3}\left(\mathbb{F}_{2}\right)$ is isomorphic to an already familiar group.
Remark. The group $U_{3}\left(\mathbb{F}_{p}\right)$ is often called the Heisenberg group and is useful in mathematical physics.
(b) Show that $U_{2}\left(\mathbb{F}_{p}\right) \cong \mathbb{Z}_{p}$, and that if $n \geq 2$, then $U_{2}\left(\mathbb{F}_{p}\right)$ is isomorphic to a subgroup of $U_{n}\left(\mathbb{F}_{p}\right)$.
C. 9.1 Do either of the following sets of $n \times n$ matrices form a group?
(a) Diagonal matrices, $\left\{a \in M_{n}(\mathbb{R}) \mid a_{i j}=0, i \neq j, a_{i i} \neq 0\right\}$.
(b) Symmetric matrices, $\left\{a \in M_{n}(\mathbb{R}) \mid a_{i j}=a_{j i}, 1 \leq i, j \leq n\right\}$.
(2) Let $C_{r}=\langle x\rangle$ be the cyclic group with r elements (but written with multiplication, rather than addition). Let

$$
W_{r, n}=\left\{\begin{array}{l|l}
a \in M_{n}\left(C_{r} \cup\{0\}\right) & \begin{array}{l}
a \text { has exactly one nonzero entry } \\
\text { in every row and every column }
\end{array}
\end{array}\right\}
$$

(a) Show that $W_{r, n}$ is a group.
(b) Show that $W_{2,2} \cong D_{4}$.
(c) What groups are $W_{1, n}$ and $W_{r, 1}$ isomorphic to?
(d) What is the order of $W_{r, n}$?

