Math 3140: Homework 11

Due: Wednesday, November 16

- 17.1. Let $G = \langle (1,2,3)(4,5), (7,8) \rangle \subseteq S_8$. Then G acts on the set $X = \{1,2,3,4,5,6,7,8\}$. Calculate the orbits of the G-action in X, and the stabilizer of each element.
- 17.4 Let G act on a set X, and let O be an orbit in G. Show that $G_x = G_y$ for all $x, y \in O$ if and only if $G_x \triangleleft G$.
- 17.7-8. The diagonal action. Suppose G acts on X and Y. Let

$$\begin{array}{cccc} G \times (X \times Y) & \longrightarrow & X \times Y \\ (g, (x, y)) & \mapsto & (g(x), g(y)) \end{array} \tag{(*)}$$

- (a) Show that (*) gives an action of G on $X \times Y$.
- (b) Find the stabilizer of $(x, y) \in X \times Y$.
- (c) Give an example to show that this action is not necessarily transitive, even if G acts transitively on both X and Y.
- (d) Find the orbits and stabilizers of $G = \langle (1, 2, 3, 4), (2, 4) \rangle \subseteq S_4$ acting on $X \times X$ diagonally, where $X = \{1, 2, 3, 4\}$.
- 17.10. The *centralizer* of $g \in G$ is the subgroup

$$C_G(g) = \{h \in G \mid hgh^{-1} = g\}$$

- (a) Identify a set X with an action of G on that set such that $C_G(g) = G_g$ for that action.
- (b) Show that if some conjugacy class of G has exactly two elements, then G is not simple.