Project 2

Due: November 9, 2007

Recommended length: 3-5 pages.
Format: typed.

The goal of this assignment is to examine the behavior of in and out shuffles. Suppose that you have a deck of $2 n$ cards. Let $i \in S_{2 n}$ denote the permutation that gives an in-shuffle, and let $o \in S_{2 n}$ denote the permutation that gives the out-shuffle. Let

$$
B_{n}=\left\{\begin{array}{c}
n \times n \text { matrices with entries in }\{-1,0,1\} \\
\text { and exactly one nonzero entry in } \\
\text { every row and in every column }
\end{array}\right\} .
$$

For $b \in B_{n}$, let $\bar{b} \in W_{n}$ be the same matrix as b but with -1 's replaced by 1's. The goals of the project are to
(1) Prove the following two results.

Theorem. The group $\langle i, o\rangle$ is isomorphic to a subgroup of B_{n}.
Corollary. The order of $\langle i, o\rangle$ is less than or equal to $2^{n} n!$.
(2) Investigate the behavior of the three following functions.

$$
\left.\begin{array}{rlrlrl}
\sigma: B_{n} & \longrightarrow\{-1,1\} & \bar{\sigma}: B_{n} & \longrightarrow\{-1,1\} & \sigma \times \bar{\sigma}: B_{n} & \longrightarrow\{-1,1\} \\
b & \mapsto \operatorname{det}(b) & b & \mapsto & \operatorname{det}(\bar{b}), & b
\end{array}\right) \operatorname{det}(b) \operatorname{det}(\bar{b}) .
$$

In particular, show that each is a homomorphism, and describe their kernels.
Note that this is a writing assignment, so the main focus should be on clearly communicating the ideas in the proof. I recommend looking at your favorite mathematics texts and trying to emulate their style. I also suggest you have another member of the class read through a draft before handing it in.

