Computational Complexity of Semigroup Properties

Trevor Jack

CU Boulder

Joint work with Peter Mayr

Semigroup Complexity

- ∢ ∃ ▶

Notation and Regularity Problem

Transformation Semigroups

- $[n] = \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S \leq T_n$

A (10) A (10) A (10)

Notation and Regularity Problem

Transformation Semigroups

- $[n] = \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S \leq T_n$

Definition

$$b \in T_n$$
 is **regular** in S if for some $s \in S$, $bsb = b$.

- 4 @ > - 4 @ > - 4 @ >

Notation and Regularity Problem

Transformation Semigroups

- $[n] = \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S \leq T_n$

Definition

 $b \in T_n$ is **regular** in S if for some $s \in S$, bsb = b.

RegularElement

Input: $a_1, ..., a_k, b \in T_n$ Output: Is *b* regular in $\langle a_1, ..., a_k \rangle$?

- 4 同 6 4 日 6 4 日 6

RegularElement Theorem and Proof

Theorem

RegularElement is PSPACE-Complete.

- 4 同 ト 4 ヨ ト 4 ヨ

RegularElement Theorem and Proof

Theorem

RegularElement is PSPACE-Complete.

Definition

A deterministic finite automata (DFA) has:

- \bullet a set of states Z with a start state and an accept state; and
- 2) a set of transformations Σ , which map states to states.

RegularElement Theorem and Proof

Theorem

RegularElement is PSPACE-Complete.

Definition

A deterministic finite automata (DFA) has:

- \bullet a set of states Z with a start state and an accept state; and
- 2) a set of transformations Σ , which map states to states.

The proof uses the following PSPACE-complete problem (Kozen, 1970):

Finite Automata Intersection (FAI)

Input: DFA's $A_1, ..., A_\ell$ with shared transitions Σ Output: Whether there is $w \in \Sigma^*$ accepted by each A_i .

Proof Sketch

Proof.

Given DFAs $A_1, ..., A_\ell$ with sets of states $Z_1, ..., Z_\ell$ and shared transitions Σ , define the following transformation semigroup:

• Transformed Set: $Z = \bigsqcup_{i=1}^{\ell} Z_i$ along with new state 0.

- Generators: Σ defined naturally on Z and fixing 0.
- Add generator *h* that sends accept states to start states and sends every other state to 0.

Then *h* is regular in this semigroup iff there is a $w \in \Sigma^*$ accepted by each $A_1, ..., A_\ell$. Hence, RegularElement is PSPACE-hard.

RegularElement is in NPSPACE because we can nondeterministically guess the generators that produce an *s* satisfying bsb = b. So, by Savitch's Theorem, RegularElement is in PSPACE, and thus PSPACE-complete.

Regular Semigroup

Open Problem

How hard is it to check that every element in S is regular?

A (10) A (10) A (10)

Regular Semigroup

Open Problem

How hard is it to check that every element in S is regular?

A semigroup is **completely regular** if each element generates a subgroup.

Theorem

Determining if $\langle a_1, \ldots, a_k \rangle \leq T_n$ is completely regular is in P.

Proof requires use of "transformation graphs"

· · · · · · · · ·

Identity Checking

Fix u, v semigroup terms in variables z_1, \ldots, z_m

Introduction

Identity Checking

Fix u, v semigroup terms in variables z_1, \ldots, z_m

 $Model(u \approx v)$

Input: $a_1, \ldots, a_k \in T_n$ Output: Whether $\langle a_1, ..., a_k \rangle$ models $u(z_1, ..., z_m) \approx v(z_1, ..., z_m)$.

Identity Checking

Fix u, v semigroup terms in variables z_1, \ldots, z_m

```
 \begin{array}{l} \mathsf{Model}(u \approx v) \\ \mathsf{Input:} \ a_1, ..., a_k \in \mathcal{T}_n \\ \mathsf{Output:} \ \mathsf{Whether} \ \langle a_1, ..., a_k \rangle \ \mathsf{models} \ u(z_1, ..., z_m) \approx v(z_1, ..., z_m). \end{array}
```

Example: Band Identity $z_1z_1 = u \approx v = z_1$

- 4 @ > - 4 @ > - 4 @ >

Introduction

Identity Checking

Fix u, v semigroup terms in variables z_1, \ldots, z_m

```
Model(u \approx v)
Input: a_1, \ldots, a_k \in T_n
Output: Whether \langle a_1, ..., a_k \rangle models u(z_1, ..., z_m) \approx v(z_1, ..., z_m).
```

Example: Band Identity

 $z_1z_1 = u \approx v = z_1$

Theorem Model($u \approx v$) is in P.

Notation

Then

Let W be the set of all initial segments of u and v including the empty word 1. For $x \in [n], s_1, \ldots, s_m \in S$ define evaluations,

$$e(x, s_1, \dots, s_m) \colon W \to [n], \ w \mapsto xw(s_1, \dots, s_m).$$
$$F := \{e(x, s_1, \dots, s_m) \ : \ x \in [n], s_1, \dots, s_m \in S\} \subseteq [n]^W.$$
$$S \text{ satisfies } u \approx v \text{ iff } f(u) = f(v) \text{ for all } f \in F.$$

Notation

Let W be the set of all initial segments of u and v including the empty word 1. For $x \in [n], s_1, \ldots, s_m \in S$ define evaluations,

$$e(x, s_1, \ldots, s_m) \colon W \to [n], w \mapsto xw(s_1, \ldots, s_m).$$

$$F := \{e(x, s_1, \ldots, s_m) : x \in [n], s_1, \ldots, s_m \in S\} \subseteq [n]^W$$

Then S satisfies $u \approx v$ iff f(u) = f(v) for all $f \in F$.

Example: Band Identity

$$F := \{ (x, xs, xs^2) : x \in [n], s \in S \}$$

Lemmas

Lemma

Let $S = \langle a_1, ..., a_k \rangle \subseteq T_n$, $d \in \mathbb{N}$, and $f \in [n]^d$. Then fS can be enumerated in $O(n^d k)$ time.

・ロン ・四 ・ ・ ヨン ・ ヨン

Lemmas

Lemma

Let $S = \langle a_1, ..., a_k \rangle \subseteq T_n$, $d \in \mathbb{N}$, and $f \in [n]^d$. Then fS can be enumerated in $O(n^d k)$ time.

Definition

The **degree-d transformation graph** of $S = \langle a_1, ..., a_k \rangle$ is $G^d = (V, E)$ having vertices $V = [n]^d$ and edges $E = \{(x, y) \in V^2 : \exists i \in [k] (xa_i = y)\}$, where *S* acts on $[n]^d$ component-wise.

Enumerate fS using depth-first search algorithm. Max of $n^d k$ edges.

< 回 ト < 三 ト < 三 ト

Lemmas

Lemma

Let $S = \langle a_1, ..., a_k \rangle \subseteq T_n$, $d \in \mathbb{N}$, and $f \in [n]^d$. Then fS can be enumerated in $O(n^d k)$ time.

Definition

The **degree-d transformation graph** of $S = \langle a_1, ..., a_k \rangle$ is $G^d = (V, E)$ having vertices $V = [n]^d$ and edges $E = \{(x, y) \in V^2 : \exists i \in [k] (xa_i = y\},$ where S acts on $[n]^d$ component-wise.

Enumerate fS using depth-first search algorithm. Max of $n^d k$ edges.

Lemma

Let
$$f \in [n]^W$$
. Then $f \in F$ iff
 $\forall i \in [m] \exists g \in fS \ \forall wz_i \in W \colon f(wz_i) = g(w).$

- 一司

Extensions of the above strategy

Back to that completely regular problem...

l emma

 $a \in T_n$ generates a subgroup iff $a|_{Im(a)}$ is a permutation.

We can check whether every element permutes its image by generating

$$\mathsf{F} := \{(x, xs, xs^2, y, ys, ys^2) : x, y \in [n], s \in \mathsf{S}\} \subseteq [n]^6$$

and checking that $f(2) \neq f(5) \Rightarrow f(3) \neq f(6)$ for each $f \in F$.

Extensions

Unresolved Extensions

Open Problem: Quasi-Identities

Complexity of whether S models $u_1(z_1,...,z_m) \approx v_1(z_1,...,z_m) \Rightarrow u_2(z_1,...,z_m) \approx v_2(z_1,...,z_m)?$

• • = • • = •

Extensions

Unresolved Extensions

Open Problem: Quasi-Identities

Complexity of whether S models $u_1(z_1,...,z_m) \approx v_1(z_1,...,z_m) \Rightarrow u_2(z_1,...,z_m) \approx v_2(z_1,...,z_m)?$

Open Problem: Quantifiers

Complexity of whether S models $\exists z_1, ..., z_\ell \forall z_{\ell+1}, ..., z_m(u_1(z_1, ..., z_m) \approx v_1(z_1, ..., z_m))?$

An example of this last question is $\exists z_1(z_1z_2 \approx z_1)$, the left zero problem.

- 4 同 6 4 日 6 4 日 6

Zeroes

Definitions and Problems

An element, $0 \in S$, is called a **left zero** if 0s = 0 for all $s \in S$.

Theorem

Determining if a transformation semigroup has a left zero is in P.

Zeroes

Definitions and Problems

An element, $0 \in S$, is called a **left zero** if 0s = 0 for all $s \in S$.

Theorem

Determining if a transformation semigroup has a left zero is in P.

An element, $0 \in S$, is called a **right zero** if s0 = 0 for all $s \in S$.

Theorem

Determining if a transformation semigroup has a right zero is in P.

N 4 E N 4 E N

Zeroes

Definitions and Problems

An element, $0 \in S$, is called a **left zero** if 0s = 0 for all $s \in S$.

Theorem

Determining if a transformation semigroup has a left zero is in P.

An element, $0 \in S$, is called a **right zero** if s0 = 0 for all $s \in S$.

Theorem

Determining if a transformation semigroup has a right zero is in P.

An element, $0 \in S$, is called a **zero** if s0 = 0 = 0s for all $s \in S$.

Theorem

Determining if a transformation semigroup has a zero is in P.

Nilpotence

A semigroup S that has a zero element is called **nilpotent** if $S^d = \{0\}$ for some $d \in \mathbb{N}$.

Theorem

Determining if $S = \langle a_1, ..., a_k \rangle \subseteq T_n$ is nilpotent is in P.

Nilpotence

A semigroup S that has a zero element is called **nilpotent** if $S^d = \{0\}$ for some $d \in \mathbb{N}$.

Theorem

Determining if $S = \langle a_1, ..., a_k \rangle \subseteq T_n$ is nilpotent is in P.

Lemma

S is nilpotent iff it has a zero element, 0, and the graph (V, E)

is acyclic.