Complexity of testing for a difference term in idempotent algebras

William DeMeo, Ralph Freese, Matt Valeriote

http://math.hawaii.edu/~ralph/
http://uacalc.org/
https://github.com/UACalc/

Algebras and Algorithms, University of Hawaii, May 18-20, 2018

William DeMeo, Ralph Freese, Matt Valeriote

Testing for a Difference Term

Difference Terms

Definition

A *difference term* for a variety \mathcal{V} is a ternary term *d* in the language of \mathcal{V} that satisfies the following: if $\mathbf{A} \in \mathcal{V}$, then for all $a, b \in A$ we have

$$d^{\mathbf{A}}(a, a, b) = b$$
 and $d^{\mathbf{A}}(a, b, b) [\theta, \theta] a$, (1)

where θ is any congruence containing (a, b) and $[\cdot, \cdot]$ denotes the *commutator*.

Difference Terms

Definition

A *difference term* for a variety \mathcal{V} is a ternary term d in the language of \mathcal{V} that satisfies the following: if $\mathbf{A} \in \mathcal{V}$, then for all $a, b \in A$ we have

$$d^{\mathbf{A}}(a, a, b) = b$$
 and $d^{\mathbf{A}}(a, b, b) [\theta, \theta] a$, (1)

where θ is any congruence containing (a, b) and $[\cdot, \cdot]$ denotes the *commutator*.

Theorem (Kearnes)

The variety $\mathcal{V} = \mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} has a difference if and only if \mathcal{V} omits TCT type $\mathbf{1}$ and, for all finite algebras $\mathbf{B} \in \mathcal{V}$, the minimal sets of every type $\mathbf{2}$ prime interval in Con(\mathbf{B}) have empty tails.

William DeMeo, Ralph Freese, Matt Valeriote

Difference Terms

Definition

A *difference term* for a variety \mathcal{V} is a ternary term d in the language of \mathcal{V} that satisfies the following: if $\mathbf{A} \in \mathcal{V}$, then for all $a, b \in A$ we have

$$d^{\mathsf{A}}(a, a, b) = b$$
 and $d^{\mathsf{A}}(a, b, b) [\theta, \theta] a$,

where θ is any congruence containing (a, b) and $[\cdot, \cdot]$ denotes the *commutator*.

Theorem (Kearnes, short version)

The variety $\mathcal{V} = \mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} has a difference if and only if \mathcal{V} has no **1**'s and no type **2** tails.

(1)

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{V} = \mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no **1**'s, no **5**'s, and no tails.

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{V} = \mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no **1**'s, no **5**'s, and no tails.

Given **A** finite, how hard is it to decide if $\mathbb{V}(\mathbf{A})$ is CM?

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{V} = \mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no **1**'s, no **5**'s, and no tails.

Given **A** finite, how hard is it to decide if $\mathbb{V}(\mathbf{A})$ is CM?

Answer: EXPTIME-complete.

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{V} = \mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no **1**'s, no **5**'s, and no tails.

Given **A** finite, how hard is it to decide if $\mathbb{V}(\mathbf{A})$ is CM?

Answer: EXPTIME-complete.

But if **A** is idempotent, it is Polynomial time.

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{V} = \mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no **1**'s, no **5**'s, and no tails.

Given **A** finite, how hard is it to decide if $\mathbb{V}(\mathbf{A})$ is CM?

- Answer: EXPTIME-complete.
- But if **A** is idempotent, it is Polynomial time.

Do these results hold for testing if $\mathbb{V}(\mathbf{A})$ has a difference term?

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{V} = \mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no **1**'s, no **5**'s, and no tails.

Given **A** finite, how hard is it to decide if $\mathbb{V}(\mathbf{A})$ is CM?

Answer: EXPTIME-complete.

But if **A** is idempotent, it is Polynomial time.

Do these results hold for testing if $\mathbb{V}(\boldsymbol{A})$ has a difference term? Yes.

Difference Term

Theorem

Let **A** finite and idempotent, $\mathcal{V} = \mathbb{V}(\mathbf{A})$. Then \mathcal{V} has a difference term if and only if the following conditions hold:

V omits TCT-type 1.

Difference Term

Theorem

Let **A** finite and idempotent, $\mathcal{V} = \mathbb{V}(\mathbf{A})$. Then \mathcal{V} has a difference term if and only if the following conditions hold:

- V omits TCT-type 1.
- There do not exist $a, b, c \in A$ satisfying the following, where $\mathbf{B} := Sg^{\mathbf{A}}(a, b, c)$ and $\mathbf{C} := Sg^{\mathbf{B}^2}(\{(a, b), (a, c), (b, c)\} \cup \mathbf{0}_{\mathbf{B}})$:
 - $\beta := Cg^{B}(a, b)$ is join irreducible with lower cover α ,
 - **2** $((a,b),(b,b)) \notin (\alpha_0 \land \alpha_1) \lor Cg^{C}((a,c),(b,c))$, and

 $[\beta,\beta] \leq \alpha.$

Difference Term

Theorem

Let **A** finite and idempotent, $\mathcal{V} = \mathbb{V}(\mathbf{A})$. Then \mathcal{V} has a difference term if and only if the following conditions hold:

- V omits TCT-type 1.
- There do not exist $a, b, c \in A$ satisfying the following, where $\mathbf{B} := Sg^{\mathbf{A}}(a, b, c)$ and $\mathbf{C} := Sg^{\mathbf{B}^2}(\{(a, b), (a, c), (b, c)\} \cup \mathbf{0}_{\mathbf{B}})$:
 - $\beta := Cg^{B}(a, b)$ is join irreducible with lower cover α ,
 - **2** $((a,b),(b,b)) \notin (\alpha_0 \land \alpha_1) \lor Cg^{C}((a,c),(b,c)),$ and

 $[\beta,\beta] \le \alpha.$

Next slide.

The third item

- There do not exist x_0 , x_1 , y_0 , $y_1 \in A$ satisfying the following, where **B** is the subalgebra of **A** × **A** generated by $0 := (x_0, x_1), 1 := (y_0, x_1)$, and $t := (x_0, y_1)$:
 - $\beta := Cg^{B}(0, 1)$ is join irreducible with lower cover α ,
 - 2 $\rho_0 \lor \alpha = \mathbf{1}_B$, and
 - (3) the type of β over α is **2**.

If **A** is an algebra with underlying set (or universe) *A*, we let $|\mathbf{A}| = |A|$ be the cardinality of *A* and $||\mathbf{A}||$ be the *input size*; that is,

$$||\mathbf{A}|| = \sum_{i=0}^{r} k_i n^i$$

where, k_i is the number of basic operations of arity *i* and *r* is the largest arity. We let

$$n = |\mathbf{A}|$$
 $m = ||\mathbf{A}||$
 $r = \text{the largest arity of the operations of } \mathbf{A}$

Theorem (F-V + B-K-P-S)

Let \mathcal{V} be the variety generated by a finite, idempotent algebra **A**. The time needed to test:

- if \mathcal{V} has a Taylor term is at most crn³m;
- if \mathcal{V} is CM is at most crn⁴ m²;
- if a prime interval in Con(A) has type 2 is at most crm³.

Corollary

Testing for a difference term takes time at most crn⁴m⁶.

Question: Can we the commutator to speed up the third item?

Theorem

Let **A** be a finite algebra with the parameters above. Then there is a constant c independent of these parameters such that:

• If S is a subset of A, then $Sg^{A}(S)$ can be computed in time

 $cr || \operatorname{Sg}^{\mathbf{A}}(S) || \leq cr ||\mathbf{A}|| = crm$

Theorem

Let **A** be a finite algebra with the parameters above. Then there is a constant c independent of these parameters such that:

If S is a subset of A, then $Sg^{A}(S)$ can be computed in time

 $cr || \operatorname{Sg}^{\mathsf{A}}(S) || \leq cr ||\mathsf{A}|| = crm$

3 If $a, b \in A$, then $Cg^{A}(a, b)$ can be computed in time

 $cr||\mathbf{A}|| = crm.$

 $M(\alpha, \beta)$ is the subalgebra of **A**⁴ generated by the elements of the form

$$\begin{bmatrix} a & a \\ a' & a' \end{bmatrix}$$
 and $\begin{bmatrix} b & b' \\ b & b' \end{bmatrix}$

where $a \alpha a'$ and $b \beta b'$. Then by definition $[\alpha, \beta]$ is the least congruence γ such that

if
$$\begin{bmatrix} x & y \\ u & v \end{bmatrix}$$
 is in $M(\alpha, \beta)$ and $x \gamma y$, then $u \gamma v$. (2)

Let $\delta = [\alpha, \beta]$. Clearly, if $\begin{bmatrix} x & x \\ u & v \end{bmatrix}$ is in $M(\alpha, \beta)$, then $u \delta v$. Let δ_1 be the congruence generated by the (u, v)'s so obtained. Then $\delta_1 \leq \delta$.

$$\delta_{i+1} = \mathsf{Cg}^{\mathsf{A}}\left(\left\{(u, v) : \begin{bmatrix} x & y \\ u & v \end{bmatrix} \in M(\alpha, \beta) \text{ and } (x, y) \in \delta_i\right\}\right)$$

Clearly, $\delta_1 \leq \delta_2 \leq \cdots \leq \delta$ and so $\bigvee_i \delta_i \leq \delta$. In fact, they are equal.

Let $\delta = [\alpha, \beta]$. Clearly, if $\begin{bmatrix} x & x \\ u & v \end{bmatrix}$ is in $M(\alpha, \beta)$, then $u \delta v$. Let δ_1 be the congruence generated by the (u, v)'s so obtained. Then $\delta_1 \leq \delta$.

$$\delta_{i+1} = \mathsf{Cg}^{\mathsf{A}}\left(\left\{(u, v) : \begin{bmatrix} x & y \\ u & v \end{bmatrix} \in M(\alpha, \beta) \text{ and } (x, y) \in \delta_i\right\}\right)$$

Clearly, $\delta_1 \leq \delta_2 \leq \cdots \leq \delta$ and so $\bigvee_i \delta_i \leq \delta$. In fact, they are equal.

Time: a constant time

 $rm^4 + n(n^4 + rm)$

Let $\delta = [\alpha, \beta]$. Clearly, if $\begin{bmatrix} x & x \\ u & v \end{bmatrix}$ is in $M(\alpha, \beta)$, then $u \delta v$. Let δ_1 be the congruence generated by the (u, v)'s so obtained. Then $\delta_1 \leq \delta$.

$$\delta_{i+1} = \mathsf{Cg}^{\mathsf{A}}\left(\left\{(u, v) : \begin{bmatrix} x & y \\ u & v \end{bmatrix} \in M(\alpha, \beta) \text{ and } (x, y) \in \delta_i\right\}\right)$$

Clearly, $\delta_1 \leq \delta_2 \leq \cdots \leq \delta$ and so $\bigvee_i \delta_i \leq \delta$. In fact, they are equal.

Time: a constant time

$$rm^4 + n(n^4 + rm)$$

We can assume A is not unary. So the time is a constant times

*rm*⁴.

The columns of $M(\alpha, \beta)$ are elements of $\mathbf{A}(\alpha)$, the subalgebra of $\mathbf{A} \times \mathbf{A}$ whose coordinates are α -related.

The columns of $M(\alpha, \beta)$ are elements of $\mathbf{A}(\alpha)$, the subalgebra of $\mathbf{A} \times \mathbf{A}$ whose coordinates are α -related. Viewing $M(\alpha, \beta)$ as a relation on $\mathbf{A}(\alpha)$, Let

 $\Delta_{lpha,eta}$

be the congruence generated by it. Can we use $\Delta_{\alpha,\beta}$ in place of $M(\alpha,\beta)$ in the algorithm?

The columns of $M(\alpha, \beta)$ are elements of $\mathbf{A}(\alpha)$, the subalgebra of $\mathbf{A} \times \mathbf{A}$ whose coordinates are α -related. Viewing $M(\alpha, \beta)$ as a relation on $\mathbf{A}(\alpha)$, Let

 $\Delta_{lpha,eta}$

be the congruence generated by it. Can we use $\Delta_{\alpha,\beta}$ in place of $M(\alpha,\beta)$ in the algorithm? **No.**

11/13

The columns of $M(\alpha, \beta)$ are elements of $\mathbf{A}(\alpha)$, the subalgebra of $\mathbf{A} \times \mathbf{A}$ whose coordinates are α -related. Viewing $M(\alpha, \beta)$ as a relation on $\mathbf{A}(\alpha)$, Let

$\Delta_{lpha,eta}$

be the congruence generated by it. Can we use $\Delta_{\alpha,\beta}$ in place of $M(\alpha,\beta)$ in the algorithm? **No.** But **yes** if **A** has a Taylor term and $[\alpha,\beta] = [\beta,\alpha]$.

Theorem (Kearnes-Szendrei)

If **A** has a Taylor term, then $[\alpha, \beta]_s = [\alpha, \beta]_\ell$.

Suppose $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Delta_{\alpha,\beta}$ and $(a, b) \in \delta$. Then, since $\Delta_{\alpha,\beta}$ is the transitive closure of $M(\alpha, \beta)$, there are elements a_i and c_i , in A, $i = 0, \ldots, k$, with $a_0 = a$, $c_0 = c$, $a_k = b$ and $c_k = d$, such that $\begin{bmatrix} a_i & a_{i+1} \\ c_i & c_{i+1} \end{bmatrix} \in M(\alpha, \beta)$. Now the linear commutator is $[\alpha^*, \beta^*]|_A$, where α^* and β^* are congruences on an expansion \mathbf{A}^* of \mathbf{A} such that $\alpha \subseteq \alpha^*$ and $\beta \subseteq \beta^*$.

Moreover $M(\alpha, \beta) \subseteq M(\alpha^*, \beta^*)$, the latter calculated in \mathbf{A}^* , because the generating matrices of $M(\alpha^*, \beta^*)$ contain those of $M(\alpha, \beta)$, and the operations of \mathbf{A} are contained in the operations of \mathbf{A}^* . So $\begin{bmatrix} a_i & a_{i+1} \\ c_i & c_{i+1} \end{bmatrix} \in M(\alpha^*, \beta^*)$. By its definition \mathbf{A}^* has a Maltsev term, and consequently $M(\alpha^*, \beta^*)$ is transitive as a relation on $\mathbf{A}(\alpha^*)$. Thus $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(\alpha^*, \beta^*)$, and hence, $(c, d) \in [\alpha^*, \beta^*]|_{\mathbf{A}} = [\alpha, \beta]$.

Moreover $M(\alpha, \beta) \subseteq M(\alpha^*, \beta^*)$, the latter calculated in \mathbf{A}^* , because the generating matrices of $M(\alpha^*, \beta^*)$ contain those of $M(\alpha, \beta)$, and the operations of \mathbf{A} are contained in the operations of \mathbf{A}^* . So $\begin{bmatrix} a_i & a_{i+1} \\ c_i & c_{i+1} \end{bmatrix} \in M(\alpha^*, \beta^*)$. By its definition \mathbf{A}^* has a Maltsev term, and consequently $M(\alpha^*, \beta^*)$ is transitive as a relation on $\mathbf{A}(\alpha^*)$. Thus $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(\alpha^*, \beta^*)$, and hence, $(c, d) \in [\alpha^*, \beta^*]|_{\mathbf{A}} = [\alpha, \beta]$.

Corollary

If **A** has a Taylor term and $[\alpha, \beta] = [\beta, \alpha]$, then $[\alpha, \beta]$ can be computed in time $c(rm^2 + n^5)$. In particular, $[\beta, \beta]$ can be computed in this time.

William DeMeo, Ralph Freese, Matt Valeriote