Complexity of testing for a difference term in idempotent algebras

William DeMeo, Ralph Freese, Matt Valeriote

```
http://math.hawaii.edu/~ralph/
http://uacalc.org/
https://github.com/UACalc/
```

Algebras and Algorithms, University of Hawaii, May 18-20, 2018

Difference Terms

Definition

A difference term for a variety ν is a ternary term d in the language of \mathcal{V} that satisfies the following: if $\mathbf{A} \in \mathcal{V}$, then for all $a, b \in A$ we have

$$
\begin{equation*}
d^{\mathbf{A}}(a, a, b)=b \quad \text { and } \quad d^{\mathbf{A}}(a, b, b)[\theta, \theta] a, \tag{1}
\end{equation*}
$$

where θ is any congruence containing (a, b) and $[\cdot, \cdot]$ denotes the commutator.

Difference Terms

Definition

A difference term for a variety ν is a ternary term d in the language of \mathcal{V} that satisfies the following: if $\mathbf{A} \in \mathcal{V}$, then for all $a, b \in A$ we have

$$
\begin{equation*}
d^{\mathbf{A}}(a, a, b)=b \quad \text { and } \quad d^{\mathbf{A}}(a, b, b)[\theta, \theta] a \tag{1}
\end{equation*}
$$

where θ is any congruence containing (a, b) and $[\cdot, \cdot]$ denotes the commutator.

Theorem (Kearnes)

The variety $\mathcal{V}=\mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} has a difference if and only if \mathcal{V} omits TCT type 1 and, for all finite algebras $\mathbf{B} \in \mathcal{V}$, the minimal sets of every type $\mathbf{2}$ prime interval in Con(B) have empty tails.

Difference Terms

Definition

A difference term for a variety ν is a ternary term d in the language of \mathcal{V} that satisfies the following: if $\mathbf{A} \in \mathcal{V}$, then for all $a, b \in A$ we have

$$
\begin{equation*}
d^{\mathbf{A}}(a, a, b)=b \quad \text { and } \quad d^{\mathbf{A}}(a, b, b)[\theta, \theta] a, \tag{1}
\end{equation*}
$$

where θ is any congruence containing (a, b) and $[\cdot, \cdot]$ denotes the commutator.

Theorem (Kearnes, short version)

The variety $\mathcal{V}=\mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} has a difference if and only if \mathcal{V} has no 1's and no type 2 tails.

Congruence Modularity (CM)

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{V}=\mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no 1 's, no 5 's, and no tails.

Congruence Modularity (CM)

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{V}=\mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no 1 's, no 5 's, and no tails.

Given \mathbf{A} finite, how hard is it to decide if $\mathbb{V}(\mathbf{A})$ is CM ?

Congruence Modularity (CM)

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{V}=\mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no 1 's, no 5 's, and no tails.

Given \mathbf{A} finite, how hard is it to decide if $\mathbb{V}(\mathbf{A})$ is CM ?
Answer: EXPTIME-complete.

Congruence Modularity (CM)

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{v}=\mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no 1 's, no 5's, and no tails.

Given \mathbf{A} finite, how hard is it to decide if $\mathbb{V}(\mathbf{A})$ is CM ?
Answer: EXPTIME-complete.
But if \mathbf{A} is idempotent, it is Polynomial time.

Congruence Modularity (CM)

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{v}=\mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no 1 's, no 5 's, and no tails.

Given \mathbf{A} finite, how hard is it to decide if $\mathbb{V}(\mathbf{A})$ is CM ?
Answer: EXPTIME-complete.
But if \mathbf{A} is idempotent, it is Polynomial time.
Do these results hold for testing if $\mathbb{V}(\mathbf{A})$ has a difference term?

Congruence Modularity (CM)

Theorem (Hobby-McKenzie, short version)

The variety $\mathcal{v}=\mathbb{V}(\mathbf{A})$ generated by a finite algebra \mathbf{A} is CM if and only if \mathcal{V} has no 1 's, no 5 's, and no tails.

Given \mathbf{A} finite, how hard is it to decide if $\mathbb{V}(\mathbf{A})$ is CM ?
Answer: EXPTIME-complete.
But if \mathbf{A} is idempotent, it is Polynomial time.
Do these results hold for testing if $\mathbb{V}(\mathbf{A})$ has a difference term? Yes.

Difference Term

Theorem

Let \mathbf{A} finite and idempotent, $\mathcal{v}=\mathbb{V}(\mathbf{A})$. Then v has a difference term if and only if the following conditions hold:
(1) v omits TCT-type 1.

Difference Term

Theorem

Let \mathbf{A} finite and idempotent, $\mathcal{V}=\mathbb{V}(\mathbf{A})$. Then \mathcal{V} has a difference term if and only if the following conditions hold:
(1) \mathcal{V} omits TCT-type 1.
(2) There do not exist $a, b, c \in A$ satisfying the following, where $\mathbf{B}:=\mathrm{Sg}^{\mathbf{A}}(a, b, c)$ and $\mathbf{C}:=\mathrm{Sg}^{\mathbf{B}^{2}}\left(\{(a, b),(a, c),(b, c)\} \cup 0_{\mathbf{B}}\right)$:
(1) $\beta:=\operatorname{Cg}^{\mathbf{B}}(a, b)$ is join irreducible with lower cover α,
(2) $((a, b),(b, b)) \notin\left(\alpha_{0} \wedge \alpha_{1}\right) \vee \operatorname{Cg}^{\mathrm{C}}((a, c),(b, c))$, and
(- $[\beta, \beta] \leq \alpha$.

Difference Term

Theorem

Let \mathbf{A} finite and idempotent, $\mathcal{V}=\mathbb{V}(\mathbf{A})$. Then \mathcal{V} has a difference term if and only if the following conditions hold:
(1) \mathcal{V} omits TCT-type 1.
(2) There do not exist $a, b, c \in A$ satisfying the following, where $\mathbf{B}:=\mathrm{Sg}^{\mathbf{A}}(a, b, c)$ and $\mathbf{C}:=\mathrm{Sg}^{\mathbf{B}^{2}}\left(\{(a, b),(a, c),(b, c)\} \cup 0_{\mathbf{B}}\right)$:
(1) $\beta:=\operatorname{Cg}^{\mathbf{B}}(a, b)$ is join irreducible with lower cover α,
(2) $((a, b),(b, b)) \notin\left(\alpha_{0} \wedge \alpha_{1}\right) \vee \mathrm{Cg}^{\mathrm{c}}((a, c),(b, c))$, and

- $[\beta, \beta] \leq \alpha$.
(3) Next slide.

The third item

- There do not exist $x_{0}, x_{1}, y_{0}, y_{1} \in A$ satisfying the following, where \mathbf{B} is the subalgebra of $\mathbf{A} \times \mathbf{A}$ generated by $0:=\left(x_{0}, x_{1}\right), 1:=\left(y_{0}, x_{1}\right)$, and $t:=\left(x_{0}, y_{1}\right)$:
(1) $\beta:=\mathrm{Cg}^{\mathbf{B}}(0,1)$ is join irreducible with lower cover α,
(2) $\rho_{0} \vee \alpha=1_{\mathbf{B}}$, and
(3) the type of β over α is $\mathbf{2}$.

Complexity

If \mathbf{A} is an algebra with underlying set (or universe) A, we let $|\mathbf{A}|=|A|$ be the cardinality of A and $\|\mathbf{A}\|$ be the input size; that is,

$$
\|\mathbf{A}\|=\sum_{i=0}^{r} k_{i} n^{i}
$$

where, k_{i} is the number of basic operations of arity i and r is the largest arity. We let

$$
\begin{aligned}
n & =|\mathbf{A}| \quad m=\|\mathbf{A}\| \\
r & =\text { the largest arity of the operations of } \mathbf{A}
\end{aligned}
$$

Complexity

Theorem (F-V + B-K-P-S)

Let \mathcal{V} be the variety generated by a finite, idempotent algebra \mathbf{A}. The time needed to test:

- if \mathcal{V} has a Taylor term is at most $\mathrm{crn}^{3} \mathrm{~m}$;
- if \mathcal{V} is $C M$ is at most $c r n^{4} m^{2}$;
- if a prime interval in Con(A) has type $\mathbf{2}$ is at most crm ${ }^{3}$.

Corollary

Testing for a difference term takes time at most $\mathrm{crn}^{4} \mathrm{~m}^{6}$.
Question: Can we the commutator to speed up the third item?

Complexity

Theorem

Let A be a finite algebra with the parameters above. Then there is a constant c independent of these parameters such that:

- If S is a subset of A, then $\mathrm{Sg}^{\mathrm{A}}(S)$ can be computed in time

$$
c r\left\|\mathrm{Sg}^{\mathbf{A}}(S)\right\| \leq c r\|\mathbf{A}\|=c r m
$$

Complexity

Theorem

Let A be a finite algebra with the parameters above. Then there is a constant c independent of these parameters such that:
(1) If S is a subset of A, then $\mathrm{Sg}^{\mathrm{A}}(S)$ can be computed in time

$$
c r\left\|S g^{\mathbf{A}}(S)\right\| \leq c r\|\mathbf{A}\|=c r m
$$

(2) If $a, b \in A$, then $\mathrm{Cg}^{\mathrm{A}}(a, b)$ can be computed in time

$$
c r\|\mathbf{A}\|=c r m
$$

Complexity of Computing $[\alpha, \beta]$

$M(\alpha, \beta)$ is the subalgebra of \mathbf{A}^{4} generated by the elements of the form

$$
\left[\begin{array}{cc}
a & a \\
a^{\prime} & a^{\prime}
\end{array}\right] \text { and }\left[\begin{array}{ll}
b & b^{\prime} \\
b & b^{\prime}
\end{array}\right]
$$

where $a \alpha a^{\prime}$ and $b \beta b^{\prime}$. Then by definition $[\alpha, \beta]$ is the least congruence γ such that

$$
\text { if }\left[\begin{array}{ll}
x & y \tag{2}\\
u & v
\end{array}\right] \text { is in } M(\alpha, \beta) \text { and } x \gamma y \text {, then } u \gamma v \text {. }
$$

Complexity of Computing $[\alpha, \beta]$

Let $\delta=[\alpha, \beta]$. Clearly, if $\left[\begin{array}{ll}x & x \\ u & v\end{array}\right]$ is in $M(\alpha, \beta)$, then $u \delta v$. Let δ_{1} be the congruence generated by the (u, v) 's so obtained. Then $\delta_{1} \leq \delta$.

$$
\delta_{i+1}=\mathrm{Cg}^{\mathbf{A}}\left(\left\{(u, v):\left[\begin{array}{ll}
x & y \\
u & v
\end{array}\right] \in M(\alpha, \beta) \text { and }(x, y) \in \delta_{i}\right\}\right)
$$

Clearly, $\delta_{1} \leq \delta_{2} \leq \cdots \leq \delta$ and so $\bigvee_{i} \delta_{i} \leq \delta$. In fact, they are equal.

Complexity of Computing $[\alpha, \beta]$

Let $\delta=[\alpha, \beta]$. Clearly, if $\left[\begin{array}{ll}x & x \\ u & v\end{array}\right]$ is in $M(\alpha, \beta)$, then $u \delta v$. Let δ_{1} be the congruence generated by the (u, v) 's so obtained. Then $\delta_{1} \leq \delta$.

$$
\delta_{i+1}=\mathrm{Cg}^{\mathbf{A}}\left(\left\{(u, v):\left[\begin{array}{ll}
x & y \\
u & v
\end{array}\right] \in M(\alpha, \beta) \text { and }(x, y) \in \delta_{i}\right\}\right)
$$

Clearly, $\delta_{1} \leq \delta_{2} \leq \cdots \leq \delta$ and so $\bigvee_{i} \delta_{i} \leq \delta$. In fact, they are equal.
Time: a constant time

$$
r m^{4}+n\left(n^{4}+r m\right)
$$

Complexity of Computing $[\alpha, \beta]$

Let $\delta=[\alpha, \beta]$. Clearly, if $\left[\begin{array}{ll}x & x \\ u & v\end{array}\right]$ is in $M(\alpha, \beta)$, then $u \delta v$. Let δ_{1} be the congruence generated by the (u, v) 's so obtained. Then $\delta_{1} \leq \delta$.

$$
\delta_{i+1}=\mathrm{Cg}^{\mathrm{A}}\left(\left\{(u, v):\left[\begin{array}{ll}
x & y \\
u & v
\end{array}\right] \in M(\alpha, \beta) \text { and }(x, y) \in \delta_{i}\right\}\right)
$$

Clearly, $\delta_{1} \leq \delta_{2} \leq \cdots \leq \delta$ and so $\bigvee_{i} \delta_{i} \leq \delta$. In fact, they are equal.
Time: a constant time

$$
r m^{4}+n\left(n^{4}+r m\right)
$$

We can assume \mathbf{A} is not unary. So the time is a constant times

$$
r m^{4}
$$

Complexity of Computing $[\alpha, \beta]$

The columns of $M(\alpha, \beta)$ are elements of $\mathbf{A}(\alpha)$, the subalgebra of $\mathbf{A} \times \mathbf{A}$ whose coordinates are α-related.

Complexity of Computing $[\alpha, \beta]$

The columns of $M(\alpha, \beta)$ are elements of $\mathbf{A}(\alpha)$, the subalgebra of $\mathbf{A} \times \mathbf{A}$ whose coordinates are α-related.
Viewing $M(\alpha, \beta)$ as a relation on $\mathbf{A}(\alpha)$, Let

$$
\Delta_{\alpha, \beta}
$$

be the congruence generated by it. Can we use $\Delta_{\alpha, \beta}$ in place of $M(\alpha, \beta)$ in the algorithm?

Complexity of Computing $[\alpha, \beta]$

The columns of $M(\alpha, \beta)$ are elements of $\mathbf{A}(\alpha)$, the subalgebra of $\mathbf{A} \times \mathbf{A}$ whose coordinates are α-related.
Viewing $M(\alpha, \beta)$ as a relation on $\mathbf{A}(\alpha)$, Let

$$
\Delta_{\alpha, \beta}
$$

be the congruence generated by it. Can we use $\Delta_{\alpha, \beta}$ in place of $M(\alpha, \beta)$ in the algorithm? No.

Complexity of Computing $[\alpha, \beta]$

The columns of $M(\alpha, \beta)$ are elements of $\mathbf{A}(\alpha)$, the subalgebra of $\mathbf{A} \times \mathbf{A}$ whose coordinates are α-related. Viewing $M(\alpha, \beta)$ as a relation on $\mathbf{A}(\alpha)$, Let

$$
\Delta_{\alpha, \beta}
$$

be the congruence generated by it. Can we use $\Delta_{\alpha, \beta}$ in place of $M(\alpha, \beta)$ in the algorithm? No. But yes if \mathbf{A} has a Taylor term and $[\alpha, \beta]=[\beta, \alpha]$.

Theorem (Kearnes-Szendrei)

If \mathbf{A} has a Taylor term, then $[\alpha, \beta]_{s}=[\alpha, \beta]_{\ell}$.

Complexity of Computing $[\alpha, \beta]$

Suppose $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Delta_{\alpha, \beta}$ and $(a, b) \in \delta$. Then, since $\Delta_{\alpha, \beta}$ is the transitive closure of $M(\alpha, \beta)$, there are elements a_{i} and c_{i}, in A, $i=0, \ldots, k$, with $a_{0}=a, c_{0}=c, a_{k}=b$ and $c_{k}=d$, such that
$\left[\begin{array}{ll}a_{i} & a_{i+1} \\ c_{i} & c_{i+1}\end{array}\right] \in M(\alpha, \beta)$.
Now the linear commutator is $\left.\left[\alpha^{*}, \beta^{*}\right]\right|_{A}$, where α^{*} and β^{*} are congruences on an expansion \mathbf{A}^{*} of \mathbf{A} such that $\alpha \subseteq \alpha^{*}$ and $\beta \subseteq \beta^{*}$.

Complexity of Computing $[\alpha, \beta]$

Moreover $M(\alpha, \beta) \subseteq M\left(\alpha^{*}, \beta^{*}\right)$, the latter calculated in \mathbf{A}^{*}, because the generating matrices of $M\left(\alpha^{*}, \beta^{*}\right)$ contain those of $M(\alpha, \beta)$, and the operations of \mathbf{A} are contained in the operations of \mathbf{A}^{*}. So $\left[\begin{array}{ll}a_{i} & a_{i+1} \\ c_{i} & c_{i+1}\end{array}\right] \in M\left(\alpha^{*}, \beta^{*}\right)$. By its definition \mathbf{A}^{*} has a Maltsev term, and consequently $M\left(\alpha^{*}, \beta^{*}\right)$ is transitive as a relation on $\mathbf{A}\left(\alpha^{*}\right)$. Thus $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M\left(\alpha^{*}, \beta^{*}\right)$, and hence, $\left.(c, d) \in\left[\alpha^{*}, \beta^{*}\right]\right|_{A}=[\alpha, \beta]$.

Complexity of Computing $[\alpha, \beta]$

Moreover $M(\alpha, \beta) \subseteq M\left(\alpha^{*}, \beta^{*}\right)$, the latter calculated in \mathbf{A}^{*}, because the generating matrices of $M\left(\alpha^{*}, \beta^{*}\right)$ contain those of $M(\alpha, \beta)$, and the operations of \mathbf{A} are contained in the operations of \mathbf{A}^{*}. So $\left[\begin{array}{ll}a_{i} & a_{i+1} \\ c_{i} & c_{i+1}\end{array}\right] \in M\left(\alpha^{*}, \beta^{*}\right)$. By its definition \mathbf{A}^{*} has a Maltsev term, and consequently $M\left(\alpha^{*}, \beta^{*}\right)$ is transitive as a relation on $\mathbf{A}\left(\alpha^{*}\right)$. Thus $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M\left(\alpha^{*}, \beta^{*}\right)$, and hence, $\left.(c, d) \in\left[\alpha^{*}, \beta^{*}\right]\right|_{A}=[\alpha, \beta]$.

Corollary

If \mathbf{A} has a Taylor term and $[\alpha, \beta]=[\beta, \alpha]$, then $[\alpha, \beta]$ can be computed in time $c\left(r m^{2}+n^{5}\right)$. In particular, $[\beta, \beta]$ can be computed in this time.

