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Inspiration

Theorem (Vaggione, following Baker-Pixley)

Let A be an algebra with a d-ary near unanimity operation, and let
F : Ak → A be an operation on the universe A. Then F belongs to the clone of
A iff, for every ultrapower AU of A, FU preserves the compatible relations of
AU of arity < d.

Diego Vaggione, Infinitary Baker–Pixley Theorem, Algebra universalis, to
appear.

The proof relies on two earlier papers by Vaggione, one on sheaf
representations in congruence distributive varieties, and the other on the
definability of functions by semantical conditions.
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Context

Let κ > 0 be a cardinal.

Let Relκ(A) is the set of compatible relations of A of arity < κ.
Let Γκ(A) be the set of operations on A that preserve all relations in Relκ(A).

All ops on A = Γ1(A) ⊇ Γ2(A) ⊇ Γ3(A) ⊇ · · · ⊇ Clo(A)

In general, F : Ak → A belongs to Γκ(A) iff, for any subset S ⊆ Ak of size
< κ, there is a term toperation t of A such that F|S = t|S. (F is
< κ-interpolable by term operations.)

Γd+1(A) = the clone of d-local term operations of A.
Γω(A) = the clone of local term operations of A.
Γ∞(A) =

⋂
κ Γκ(A) = the clone of term operations of A = Γω+|A|+(A)
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Examples

Let A = R be the field of real numbers plus constants.
By the Lagrange Interpolation Theorem, Γ1(A) = Γ2(A) = · · · = Γω(A) =
the clone of all operations on R.

Let G = Altω and let A be the G-set ω.
Then Γ1(A) = Γ2(A) = the full clone of all operations on ω.
Γ3(A) is the clone of 6=-preserving operations. This clone is not full or
essentially unary.
Γ4(A) = Γ5(A) = · · · = Γω(A) = the clone of all essentially unary
operations on ω, whose unary part consists of injective functions.
Γω+(A) = Γ∞(A) = the clone of A.
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Baker-Pixley

Theorem (Baker-Pixley)

If A has a d-ary near unanimity operation, then Γd(A) = Γω(A).

Theorem (Bodnarchuk-Kaluzhnin-Kotov-Romov?)

If A is finite, then Γω(A) = Γ∞(A).

Corollary

If A is finite and has a d-ary near unanimity operation, then Γd(A) = Γ∞(A).

Vaggione’s New Theorem

If A has a d-ary near unanimity operation, then Γ∗d(A) = Γ∗∞(A) = Γ∞(A).

Here Γ∗κ(A) is the set of F such that FU ∈ Γ∗κ(AU ) for all U .
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We wondered

Question. Is Γ∗ω(A) = Γ∞(A) in general?

Restatement. Is every “ultralocal term operation” a term operation?

Unravelling. Given F : Ak → A, if, for every finite subset of an ultrapower
S ⊆ AU , FU is interpolable on S by the extension of a term operation of A,
must F be a term operation?

Answer. No, but this just barely fails. We can show that Γ∗ω1
(A) = Γ∞(A).

Question’. Then, is there a simple description of Γ∗ω(A)?

Answer.’ Yes.
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(A) = Γ∞(A).

Question’. Then, is there a simple description of Γ∗ω(A)?
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Characterization

Theorem (Kearnes–Szendrei)

TFAE for arbitrary algebra A and function F : Ak → A:

F ∈ Γ∗κ+(A);

F satisfies condition (∗)κ+ below:

(∗)d Ak has a finite cover C such that

for every set B that is a union of κ
members of C there exists a term operation t of A such that f |B = t|B.

B

Ak

f (b) = t(b) for b ∈ B

s1

s2

s3 sd−1
. . .

Ak

f (si) = t(si) for si ∈ S

Compare:
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Ultralocal closure

Corollary

TFAE for F : Ak → A.

F ∈ Γ∗ω(A);

F satisfies condition (∗)d for every d. That is,
For every d, Ak has a finite cover Cd such that

for every set B that is a
union of < d members of Cd there exists a term operation t of A such
that f |B = t|B.
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A clone that is not ultralocally closed

Example If G :=
(
ω; Altω

)
, then for A = ω

F : A1 → A is a term operation of G⇔ F ∈ Altω;

F : A1 → A is a local term operation of G⇔ F : A→ A is one-to-one.

F : A→ A is an ultralocal term operation of G
⇔ F : A→ A is a permutation of finite support.

Proof (using the characterization theorem for ultralocal term ops).
⇒:

⇐: Enough: F =(u v) is an ul.term
op.

A

C1

◦ each F|B (B ∈ C1) moves
only finitely many elements

◦ so, F is a perm & has finite supp

◦ Let Ck = {X0, . . . ,Xk} partition A:

Ba

b

A
X0 X1

...

Xi

...

Xk

u

v

◦ f |B = (f ◦ (a b))|B if X0 ⊆ B
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Application: Vaggione’s Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then
Γ∗d(A) = Γ∞(A). That is, every (< d)-local term operation F : Ak → A of A
is a term operation of A.

Proof. Let Cd be a cover of Ak witnessing that F is (< d)-local.
Prove by induction on m ≥ d that

for every set B that is a union of at most m members of Cd there exists a
term operation t of A such that f |B = t|B.

If true for m− 1 and B =
⋃m

j=1 Cj (Cj ∈ Cd), let Ĉi :=
⋃

j 6=i Cj and let ti be an
n-ary term op with f |Ĉi

= ti|Ĉi
(1 ≤ i ≤ d). For t(x̄) := u(t1(x̄), . . . , td(x̄)),

f |Cj = t|Cj for every j = 1, . . . ,m,

hence f |B = t|B.
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= ti|Ĉi
(1 ≤ i ≤ d). For t(x̄) := u(t1(x̄), . . . , td(x̄)),

f |Cj = t|Cj for every j = 1, . . . ,m,

hence f |B = t|B.

K. Kearnes, A. Szendrei Ultralocal term operations



Application: Vaggione’s Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then
Γ∗d(A) = Γ∞(A). That is, every (< d)-local term operation F : Ak → A of A
is a term operation of A.

Proof. Let Cd be a cover of Ak witnessing that F is (< d)-local.
Prove by induction on m ≥ d that

for every set B that is a union of at most m members of Cd there exists a
term operation t of A such that f |B = t|B.

If true for m− 1 and B =
⋃m

j=1 Cj (Cj ∈ Cd), let Ĉi :=
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Simple Modules

Theorem (Kearnes–Szendrei)
All ultralocal term operations of a simple module are term operations.

Proof: Enough to show:
If RM is an infinite simple R-module and F : M1 → M is a unary ultralocal
term operation of RM, then F is a term operation of RM.

(Schur’s Lemma and Jacobson’s Density Theorem⇒)
K := End(RM) is division ring, w.l.o.g.: R ⊆ End(MK), and
End(MK) is the set of local term operations of RM.
(F ultralocal term op + Characterization Theorem for d = 1⇒)
There exist a finite cover {U1, . . . ,U`} of M and elements r1, . . . , r` ∈ R
such that F(x) = rix for all i and x ∈ Ui.
F ∈ End(MK), since F is an ultralocal (hence local) term op of RM.
F(x) = rix holds for all i and x ∈ SpanK(Ui).
Hence, we may assume that U1, . . . ,Ur are subspaces of MK .
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Simple Modules (Cont’d)

Proof (cont’d):

For infinite K, MK is not the union of finitely many proper subspaces.
Thus, Uj = M for some j; hence f = rj ∈ R is a term operation of RM.

For finite K we use

B. H. Neumann’s Theorem. If a group G has an irredundant finite
cover consisting of left cosets aiHi of subgroups Hi of G, then each Hi

has finite index in G.

Thus, we may assume U1, . . . ,U` have finite codimension in MK .

Let U :=
⋂`

i=1 Ui; U also has finite codimension in MK .

F is a term operation of RM if and only if F − r1 is;
therefore, we may replace F, r1, r2, . . . , r` by
F − r1, r1 − r1 = 0, r2 − r1, . . . , r` − r1.
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Simple Modules (Cont’d)

Proof (cont’d):

Thus, we may assume that F, r1, r2, . . . , r` are 0 on U; hence,

(∗) the ranges of F, r1, r2, . . . , r` are finite dimensional subspaces of
MK .

The proof of the following claim finishes the proof of the theorem:

Claim. If (∗) holds, then

F = t1r1 + . . .+ t`r` for some t1, . . . , t` ∈ R.

Idea of Proof: We actually show this in two steps:

(1) there exist s1, . . . , s` ∈ R such that ker(s1r1 + · · ·+ s`r`) ⊆ ker(F), and
(2) there exists t ∈ R such that t(s1r1 + · · ·+ s`r`) = F.

Trick:

Find endomorphisms σ1, . . . , σ`, τ ∈ End(MK) which satisfy (1)–(2) in
place of s1, . . . , s`, t.
Use that σ1, . . . , σ`, τ are local term operations of RM.
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Additional remarks/questions

1 (Remark) If C is a clone on X and D is a clone on Y , then C × D may be
viewed as a clone on X × Y . Γ∗κ(C × D) = Γ∗κ(C)× Γ∗κ(D).

2 Choose X to be infinite, choose C to be NOT ultralocally closed on X,
choose Y = X, and let D run through all 22|X| clones on X. Result: From
previous item, you get 22|X| clones on X that are not ultralocally closed.

3 There are also 22|X| clones on X that ARE ultralocally closed. Argument:
Choose an ultrafilter U on X. Let CU to be the clone of operations
preserving U-measure-zero sets. Distinct ultrafilters give distinct
maximal clones on X. Not hard to use our characterization to prove they
are ultralocally closed.

4 Don’t know if every module has an ultralocally closed clone.
5 More generally, don’t know if every algebra with a cube term has an

ultralocally closed clone.
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