Ultralocal term operations

K. Kearnes, A. Szendrei

University of Colorado

May 18, 2018

Inspiration

Theorem (Vaggione, following Baker-Pixley)

Inspiration

Theorem (Vaggione, following Baker-Pixley)

Inspiration

Theorem (Vaggione, following Baker-Pixley)

Let \mathbf{A} be an algebra with a d-ary near unanimity operation, and let $F: A^{k} \rightarrow A$ be an operation on the universe A.

Inspiration

Theorem (Vaggione, following Baker-Pixley)

Let \mathbf{A} be an algebra with a d-ary near unanimity operation, and let
$F: A^{k} \rightarrow A$ be an operation on the universe A. Then F belongs to the clone of A iff,

Inspiration

Theorem (Vaggione, following Baker-Pixley)

Let \mathbf{A} be an algebra with a d-ary near unanimity operation, and let
$F: A^{k} \rightarrow A$ be an operation on the universe A. Then F belongs to the clone of \mathbf{A} iff, for every ultrapower $\mathbf{A}_{\mathcal{U}}$ of \mathbf{A},

Inspiration

Theorem (Vaggione, following Baker-Pixley)

Let \mathbf{A} be an algebra with a d-ary near unanimity operation, and let
$F: A^{k} \rightarrow A$ be an operation on the universe A. Then F belongs to the clone of \mathbf{A} iff, for every ultrapower $\mathbf{A}_{\mathcal{U}}$ of $\mathbf{A}, F_{\mathcal{U}}$ preserves the compatible relations of $\mathbf{A}_{\mathcal{U}}$ of arity $<d$.

Inspiration

Theorem (Vaggione, following Baker-Pixley)

Let \mathbf{A} be an algebra with a d-ary near unanimity operation, and let
$F: A^{k} \rightarrow A$ be an operation on the universe A. Then F belongs to the clone of \mathbf{A} iff, for every ultrapower $\mathbf{A}_{\mathcal{U}}$ of $\mathbf{A}, F_{\mathcal{U}}$ preserves the compatible relations of $\mathbf{A}_{\mathcal{U}}$ of arity $<d$.

Diego Vaggione, Infinitary Baker-Pixley Theorem, Algebra universalis, to appear.

Inspiration

Theorem (Vaggione, following Baker-Pixley)

Let \mathbf{A} be an algebra with a d-ary near unanimity operation, and let
$F: A^{k} \rightarrow A$ be an operation on the universe A. Then F belongs to the clone of \mathbf{A} iff, for every ultrapower $\mathbf{A}_{\mathcal{U}}$ of $\mathbf{A}, F_{\mathcal{U}}$ preserves the compatible relations of $\mathbf{A}_{\mathcal{U}}$ of arity $<d$.

Diego Vaggione, Infinitary Baker-Pixley Theorem, Algebra universalis, to appear.

The proof relies on two earlier papers by Vaggione, one on sheaf representations in congruence distributive varieties, and the other on the definability of functions by semantical conditions.

Context

Let $\kappa>0$ be a cardinal.

Context

Let $\kappa>0$ be a cardinal.
Let $\operatorname{Rel}_{\kappa}(\mathbf{A})$ is the set of compatible relations of \mathbf{A} of arity $<\kappa$.

Context

Let $\kappa>0$ be a cardinal.
Let $\operatorname{Rel}_{\kappa}(\mathbf{A})$ is the set of compatible relations of \mathbf{A} of arity $<\kappa$.
Let $\Gamma_{\kappa}(\mathbf{A})$ be the set of operations on A that preserve all relations in $\operatorname{Rel}_{\kappa}(\mathbf{A})$.

Context

Let $\kappa>0$ be a cardinal.
Let $\operatorname{Rel}_{\kappa}(\mathbf{A})$ is the set of compatible relations of \mathbf{A} of arity $<\kappa$.
Let $\Gamma_{\kappa}(\mathbf{A})$ be the set of operations on A that preserve all relations in $\operatorname{Rel}_{\kappa}(\mathbf{A})$.
All ops on $A=\Gamma_{1}(\mathbf{A}) \supseteq \Gamma_{2}(\mathbf{A}) \supseteq \Gamma_{3}(\mathbf{A}) \supseteq \cdots \supseteq \operatorname{Clo}(\mathbf{A})$

Context

Let $\kappa>0$ be a cardinal.
Let $\operatorname{Rel}_{\kappa}(\mathbf{A})$ is the set of compatible relations of \mathbf{A} of arity $<\kappa$.
Let $\Gamma_{\kappa}(\mathbf{A})$ be the set of operations on A that preserve all relations in $\operatorname{Rel}_{\kappa}(\mathbf{A})$.

$$
\text { All ops on } A=\Gamma_{1}(\mathbf{A}) \supseteq \Gamma_{2}(\mathbf{A}) \supseteq \Gamma_{3}(\mathbf{A}) \supseteq \cdots \supseteq \operatorname{Clo}(\mathbf{A})
$$

In general, $F: A^{k} \rightarrow A$ belongs to $\Gamma_{\kappa}(\mathbf{A})$ iff, for any subset $S \subseteq A^{k}$ of size
$<\kappa$, there is a term toperation t of \mathbf{A} such that $\left.F\right|_{S}=\left.t\right|_{S}$. (F is
$<\kappa$-interpolable by term operations.)

Context

Let $\kappa>0$ be a cardinal.
Let $\operatorname{Rel}_{\kappa}(\mathbf{A})$ is the set of compatible relations of \mathbf{A} of arity $<\kappa$.
Let $\Gamma_{\kappa}(\mathbf{A})$ be the set of operations on A that preserve all relations in $\operatorname{Rel}_{\kappa}(\mathbf{A})$.

$$
\text { All ops on } A=\Gamma_{1}(\mathbf{A}) \supseteq \Gamma_{2}(\mathbf{A}) \supseteq \Gamma_{3}(\mathbf{A}) \supseteq \cdots \supseteq \operatorname{Clo}(\mathbf{A})
$$

In general, $F: A^{k} \rightarrow A$ belongs to $\Gamma_{\kappa}(\mathbf{A})$ iff, for any subset $S \subseteq A^{k}$ of size
$<\kappa$, there is a term toperation t of \mathbf{A} such that $\left.F\right|_{S}=\left.t\right|_{S}$. (F is
$<\kappa$-interpolable by term operations.)
$\Gamma_{d+1}(\mathbf{A})=$ the clone of d-local term operations of \mathbf{A}.

Context

Let $\kappa>0$ be a cardinal.
Let $\operatorname{Rel}_{\kappa}(\mathbf{A})$ is the set of compatible relations of \mathbf{A} of arity $<\kappa$.
Let $\Gamma_{\kappa}(\mathbf{A})$ be the set of operations on A that preserve all relations in $\operatorname{Rel}_{\kappa}(\mathbf{A})$.

$$
\text { All ops on } A=\Gamma_{1}(\mathbf{A}) \supseteq \Gamma_{2}(\mathbf{A}) \supseteq \Gamma_{3}(\mathbf{A}) \supseteq \cdots \supseteq \operatorname{Clo}(\mathbf{A})
$$

In general, $F: A^{k} \rightarrow A$ belongs to $\Gamma_{\kappa}(\mathbf{A})$ iff, for any subset $S \subseteq A^{k}$ of size
$<\kappa$, there is a term toperation t of \mathbf{A} such that $\left.F\right|_{S}=\left.t\right|_{S}$. (F is
$<\kappa$-interpolable by term operations.)
$\Gamma_{d+1}(\mathbf{A})=$ the clone of d-local term operations of \mathbf{A}.
$\Gamma_{\omega}(\mathbf{A})=$ the clone of local term operations of \mathbf{A}.

Context

Let $\kappa>0$ be a cardinal.
Let $\operatorname{Rel}_{\kappa}(\mathbf{A})$ is the set of compatible relations of \mathbf{A} of arity $<\kappa$.
Let $\Gamma_{\kappa}(\mathbf{A})$ be the set of operations on A that preserve all relations in $\operatorname{Rel}_{\kappa}(\mathbf{A})$.

$$
\text { All ops on } A=\Gamma_{1}(\mathbf{A}) \supseteq \Gamma_{2}(\mathbf{A}) \supseteq \Gamma_{3}(\mathbf{A}) \supseteq \cdots \supseteq \operatorname{Clo}(\mathbf{A})
$$

In general, $F: A^{k} \rightarrow A$ belongs to $\Gamma_{\kappa}(\mathbf{A})$ iff, for any subset $S \subseteq A^{k}$ of size
$<\kappa$, there is a term toperation t of \mathbf{A} such that $\left.F\right|_{S}=\left.t\right|_{S}$. (F is
$<\kappa$-interpolable by term operations.)
$\Gamma_{d+1}(\mathbf{A})=$ the clone of d-local term operations of \mathbf{A}.
$\Gamma_{\omega}(\mathbf{A})=$ the clone of local term operations of \mathbf{A}.
$\Gamma_{\infty}(\mathbf{A})=\bigcap_{\kappa} \Gamma_{\kappa}(\mathbf{A})=$ the clone of term operations of $\mathbf{A}=\Gamma_{\omega+|A|^{+}}(\mathbf{A})$

Examples

K. Kearnes, A. Szendrei Ultralocal term operations

Examples

Let $\mathbf{A}=\mathbb{R}$ be the field of real numbers plus constants.

Examples

Let $\mathbf{A}=\mathbb{R}$ be the field of real numbers plus constants.
By the Lagrange Interpolation Theorem, $\Gamma_{1}(\mathbf{A})=\Gamma_{2}(\mathbf{A})=\cdots=\Gamma_{\omega}(\mathbf{A})=$ the clone of all operations on \mathbb{R}.

Examples

Let $\mathbf{A}=\mathbb{R}$ be the field of real numbers plus constants.
By the Lagrange Interpolation Theorem, $\Gamma_{1}(\mathbf{A})=\Gamma_{2}(\mathbf{A})=\cdots=\Gamma_{\omega}(\mathbf{A})=$ the clone of all operations on \mathbb{R}.

Let $G=\operatorname{Alt}_{\omega}$ and let \mathbf{A} be the G-set ω.

Examples

Let $\mathbf{A}=\mathbb{R}$ be the field of real numbers plus constants.
By the Lagrange Interpolation Theorem, $\Gamma_{1}(\mathbf{A})=\Gamma_{2}(\mathbf{A})=\cdots=\Gamma_{\omega}(\mathbf{A})=$ the clone of all operations on \mathbb{R}.

Let $G=\mathrm{Alt}_{\omega}$ and let \mathbf{A} be the G-set ω.
Then $\Gamma_{1}(\mathbf{A})=\Gamma_{2}(\mathbf{A})=$ the full clone of all operations on ω.

Examples

Let $\mathbf{A}=\mathbb{R}$ be the field of real numbers plus constants.
By the Lagrange Interpolation Theorem, $\Gamma_{1}(\mathbf{A})=\Gamma_{2}(\mathbf{A})=\cdots=\Gamma_{\omega}(\mathbf{A})=$ the clone of all operations on \mathbb{R}.

Let $G=\mathrm{Alt}_{\omega}$ and let \mathbf{A} be the G-set ω.
Then $\Gamma_{1}(\mathbf{A})=\Gamma_{2}(\mathbf{A})=$ the full clone of all operations on ω.
$\Gamma_{3}(\mathbf{A})$ is the clone of \neq-preserving operations. This clone is not full or essentially unary.

Examples

Let $\mathbf{A}=\mathbb{R}$ be the field of real numbers plus constants.
By the Lagrange Interpolation Theorem, $\Gamma_{1}(\mathbf{A})=\Gamma_{2}(\mathbf{A})=\cdots=\Gamma_{\omega}(\mathbf{A})=$ the clone of all operations on \mathbb{R}.

Let $G=\mathrm{Alt}_{\omega}$ and let \mathbf{A} be the G-set ω.
Then $\Gamma_{1}(\mathbf{A})=\Gamma_{2}(\mathbf{A})=$ the full clone of all operations on ω.
$\Gamma_{3}(\mathbf{A})$ is the clone of \neq-preserving operations. This clone is not full or essentially unary.
$\Gamma_{4}(\mathbf{A})=\Gamma_{5}(\mathbf{A})=\cdots=\Gamma_{\omega}(\mathbf{A})=$ the clone of all essentially unary operations on ω, whose unary part consists of injective functions.

Examples

Let $\mathbf{A}=\mathbb{R}$ be the field of real numbers plus constants.
By the Lagrange Interpolation Theorem, $\Gamma_{1}(\mathbf{A})=\Gamma_{2}(\mathbf{A})=\cdots=\Gamma_{\omega}(\mathbf{A})=$ the clone of all operations on \mathbb{R}.

Let $G=\mathrm{Alt}_{\omega}$ and let \mathbf{A} be the G-set ω.
Then $\Gamma_{1}(\mathbf{A})=\Gamma_{2}(\mathbf{A})=$ the full clone of all operations on ω.
$\Gamma_{3}(\mathbf{A})$ is the clone of \neq-preserving operations. This clone is not full or essentially unary.
$\Gamma_{4}(\mathbf{A})=\Gamma_{5}(\mathbf{A})=\cdots=\Gamma_{\omega}(\mathbf{A})=$ the clone of all essentially unary operations on ω, whose unary part consists of injective functions.
$\Gamma_{\omega^{+}}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})=$ the clone of \mathbf{A}.

Baker-Pixley

K. Kearnes, A. Szendrei Ultralocal term operations

Baker-Pixley

Theorem (Baker-Pixley)

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\omega}(\mathbf{A})$.

Baker-Pixley

Theorem (Baker-Pixley)

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\omega}(\mathbf{A})$.

Baker-Pixley

Theorem (Baker-Pixley)

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\omega}(\mathbf{A})$.

Theorem (Bodnarchuk-Kaluzhnin-Kotov-Romov?)
If \mathbf{A} is finite, then $\Gamma_{\omega}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Baker-Pixley

Theorem (Baker-Pixley)

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\omega}(\mathbf{A})$.

Theorem (Bodnarchuk-Kaluzhnin-Kotov-Romov?)
If \mathbf{A} is finite, then $\Gamma_{\omega}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Baker-Pixley

Theorem (Baker-Pixley)

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\omega}(\mathbf{A})$.

Theorem (Bodnarchuk-Kaluzhnin-Kotov-Romov?)

If \mathbf{A} is finite, then $\Gamma_{\omega}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Corollary

If \mathbf{A} is finite and has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Baker-Pixley

Theorem (Baker-Pixley)

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\omega}(\mathbf{A})$.

Theorem (Bodnarchuk-Kaluzhnin-Kotov-Romov?)

If \mathbf{A} is finite, then $\Gamma_{\omega}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Corollary

If \mathbf{A} is finite and has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Baker-Pixley

Theorem (Baker-Pixley)

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\omega}(\mathbf{A})$.

Theorem (Bodnarchuk-Kaluzhnin-Kotov-Romov?)

If \mathbf{A} is finite, then $\Gamma_{\omega}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Corollary

If \mathbf{A} is finite and has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Vaggione's New Theorem

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Baker-Pixley

Theorem (Baker-Pixley)

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\omega}(\mathbf{A})$.

Theorem (Bodnarchuk-Kaluzhnin-Kotov-Romov?)

If \mathbf{A} is finite, then $\Gamma_{\omega}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Corollary

If \mathbf{A} is finite and has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Vaggione's New Theorem

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Baker-Pixley

Theorem (Baker-Pixley)

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\omega}(\mathbf{A})$.

Theorem (Bodnarchuk-Kaluzhnin-Kotov-Romov?)

If \mathbf{A} is finite, then $\Gamma_{\omega}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Corollary

If \mathbf{A} is finite and has a d-ary near unanimity operation, then $\Gamma_{d}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

Vaggione's New Theorem

If \mathbf{A} has a d-ary near unanimity operation, then $\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.
Here $\Gamma_{\kappa}^{*}(\mathbf{A})$ is the set of F such that $F_{\mathcal{U}} \in \Gamma_{\kappa}^{*}\left(\mathbf{A}_{\mathcal{U}}\right)$ for all \mathcal{U}.

We wondered

K. Kearnes, A. Szendrei Ultralocal term operations

We wondered

Question. Is $\Gamma_{\omega}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$ in general?

We wondered

Question. Is $\Gamma_{\omega}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$ in general?
 Restatement. Is every "ultralocal term operation" a term operation?

We wondered

Question. Is $\Gamma_{\omega}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$ in general?
Restatement. Is every "ultralocal term operation" a term operation?
Unravelling. Given $F: A^{k} \rightarrow A$, if, for every finite subset of an ultrapower $S \subseteq \mathbf{A}_{\mathcal{U}}, F_{\mathcal{U}}$ is interpolable on S by the extension of a term operation of \mathbf{A}, must F be a term operation?

We wondered

Question. Is $\Gamma_{\omega}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$ in general?
Restatement. Is every "ultralocal term operation" a term operation?
Unravelling. Given $F: A^{k} \rightarrow A$, if, for every finite subset of an ultrapower $S \subseteq \mathbf{A}_{\mathcal{U}}, F_{\mathcal{U}}$ is interpolable on S by the extension of a term operation of \mathbf{A}, must F be a term operation?

Answer. No, but this just barely fails.

We wondered

Question. Is $\Gamma_{\omega}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$ in general?
Restatement. Is every "ultralocal term operation" a term operation?
Unravelling. Given $F: A^{k} \rightarrow A$, if, for every finite subset of an ultrapower $S \subseteq \mathbf{A}_{\mathcal{U}}, F_{\mathcal{U}}$ is interpolable on S by the extension of a term operation of \mathbf{A}, must F be a term operation?

Answer. No, but this just barely fails. We can show that $\Gamma_{\omega_{1}}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.

We wondered

Question. Is $\Gamma_{\omega}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$ in general?
Restatement. Is every "ultralocal term operation" a term operation?
Unravelling. Given $F: A^{k} \rightarrow A$, if, for every finite subset of an ultrapower $S \subseteq \mathbf{A}_{\mathcal{U}}, F_{\mathcal{U}}$ is interpolable on S by the extension of a term operation of \mathbf{A}, must F be a term operation?

Answer. No, but this just barely fails. We can show that $\Gamma_{\omega_{1}}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.
Question'. Then, is there a simple description of $\Gamma_{\omega}^{*}(\mathbf{A})$?

We wondered

Question. Is $\Gamma_{\omega}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$ in general?
Restatement. Is every "ultralocal term operation" a term operation?
Unravelling. Given $F: A^{k} \rightarrow A$, if, for every finite subset of an ultrapower $S \subseteq \mathbf{A}_{\mathcal{U}}, F_{\mathcal{U}}$ is interpolable on S by the extension of a term operation of \mathbf{A}, must F be a term operation?

Answer. No, but this just barely fails. We can show that $\Gamma_{\omega_{1}}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$.
Question'. Then, is there a simple description of $\Gamma_{\omega}^{*}(\mathbf{A})$?
Answer.' Yes.

Characterization

K. Kearnes, A. Szendrei \quad Ultralocal term operations

Characterization

Theorem (Kearnes-Szendrei)

TFAE for arbitrary algebra \mathbf{A} and function $F: A^{k} \rightarrow A$:

Characterization

Theorem (Kearnes-Szendrei)

TFAE for arbitrary algebra \mathbf{A} and function $F: A^{k} \rightarrow A$:

Characterization

Theorem (Kearnes-Szendrei)

TFAE for arbitrary algebra \mathbf{A} and function $F: A^{k} \rightarrow A$:

- $F \in \Gamma_{\kappa^{+}}^{*}(\mathbf{A})$;

Characterization

Theorem (Kearnes-Szendrei)

TFAE for arbitrary algebra \mathbf{A} and function $F: A^{k} \rightarrow A$:

- $F \in \Gamma_{\kappa^{+}}^{*}(\mathbf{A})$;

Characterization

Theorem (Kearnes-Szendrei)

TFAE for arbitrary algebra \mathbf{A} and function $F: A^{k} \rightarrow A$:

- $F \in \Gamma_{\kappa^{+}}^{*}(\mathbf{A})$;
- F satisfies condition $(*)_{\kappa^{+}}$below:

Characterization

Theorem (Kearnes-Szendrei)

TFAE for arbitrary algebra \mathbf{A} and function $F: A^{k} \rightarrow A$:

- $F \in \Gamma_{\kappa^{+}}^{*}(\mathbf{A})$;
- F satisfies condition $(*)_{\kappa^{+}}$below:

Characterization

Theorem (Kearnes-Szendrei)

TFAE for arbitrary algebra \mathbf{A} and function $F: A^{k} \rightarrow A$:

- $F \in \Gamma_{\kappa^{+}}^{*}(\mathbf{A})$;
- F satisfies condition $(*)_{\kappa^{+}}$below:
$(*)_{d} A^{k}$ has a finite cover \mathcal{C} such that for every set B that is a union of κ members of \mathcal{C} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.

$f(b)=t(b)$ for $b \in B$

Characterization

Theorem (Kearnes-Szendrei)

TFAE for arbitrary algebra \mathbf{A} and function $F: A^{k} \rightarrow A$:

- $F \in \Gamma_{\kappa^{+}}^{*}(\mathbf{A})$;
- F satisfies condition $(*)_{\kappa^{+}}$below:
$(*)_{d} A^{k}$ has a finite cover \mathcal{C} such that for every set B that is a union of κ members of \mathcal{C} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.

$f(b)=t(b)$ for $b \in B$

Compare:

$f\left(s_{i}\right)=t\left(s_{i}\right)$ for $s_{i} \in S$

Ultralocal closure

Ultralocal closure

Corollary

TFAE for $F: A^{k} \rightarrow A$.

Ultralocal closure

Corollary

TFAE for $F: A^{k} \rightarrow A$.

- $F \in \Gamma_{\omega}^{*}(\mathbf{A})$;

Ultralocal closure

Corollary

TFAE for $F: A^{k} \rightarrow A$.

- $F \in \Gamma_{\omega}^{*}(\mathbf{A})$;

Ultralocal closure

Corollary

TFAE for $F: A^{k} \rightarrow A$.

- $F \in \Gamma_{\omega}^{*}(\mathbf{A})$;
- F satisfies condition $(*)_{d}$ for every d. That is,

Ultralocal closure

Corollary

TFAE for $F: A^{k} \rightarrow A$.

- $F \in \Gamma_{\omega}^{*}(\mathbf{A})$;
- F satisfies condition $(*)_{d}$ for every d. That is,

Ultralocal closure

Corollary

TFAE for $F: A^{k} \rightarrow A$.

- $F \in \Gamma_{\omega}^{*}(\mathbf{A})$;
- F satisfies condition $(*)_{d}$ for every d. That is, For every d, A^{k} has a finite cover \mathcal{C}_{d} such that for every set B that is a union of $<d$ members of \mathcal{C}_{d}

Ultralocal closure

Corollary

TFAE for $F: A^{k} \rightarrow A$.

- $F \in \Gamma_{\omega}^{*}(\mathbf{A})$;
- F satisfies condition $(*)_{d}$ for every d. That is, For every d, A^{k} has a finite cover \mathcal{C}_{d} such that for every set B that is a union of $<d$ members of \mathcal{C}_{d} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.

A clone that is not ultralocally closed

Example If $\mathbf{G}:=\left(\omega ;\right.$ Alt $\left._{\omega}\right)$, then for $A=\omega$

- $F: A^{1} \rightarrow A$ is a term operation of $\mathbf{G} \Leftrightarrow F \in \mathrm{Alt}_{\omega}$;

A clone that is not ultralocally closed

Example If $\mathbf{G}:=\left(\omega ; \operatorname{Alt}_{\omega}\right)$, then for $A=\omega$

- $F: A^{1} \rightarrow A$ is a term operation of $\mathbf{G} \Leftrightarrow F \in \mathrm{Alt}_{\omega}$;
- $F: A^{1} \rightarrow A$ is a local term operation of $\mathbf{G} \Leftrightarrow F: A \rightarrow A$ is one-to-one.

A clone that is not ultralocally closed

Example If $\mathbf{G}:=\left(\omega ; \operatorname{Alt}_{\omega}\right)$, then for $A=\omega$

- $F: A^{1} \rightarrow A$ is a term operation of $\mathbf{G} \Leftrightarrow F \in \mathrm{Alt}_{\omega}$;
- $F: A^{1} \rightarrow A$ is a local term operation of $\mathbf{G} \Leftrightarrow F: A \rightarrow A$ is one-to-one.

A clone that is not ultralocally closed

Example If $\mathbf{G}:=\left(\omega ; \operatorname{Alt}_{\omega}\right)$, then for $A=\omega$

- $F: A^{1} \rightarrow A$ is a term operation of $\mathbf{G} \Leftrightarrow F \in \mathrm{Alt}_{\omega}$;
- $F: A^{1} \rightarrow A$ is a local term operation of $\mathbf{G} \Leftrightarrow F: A \rightarrow A$ is one-to-one.
- $F: A \rightarrow A$ is an ultralocal term operation of \mathbf{G} $\Leftrightarrow F: A \rightarrow A$ is a permutation of finite support.

A clone that is not ultralocally closed

Example If $\mathbf{G}:=\left(\omega ; \operatorname{Alt}_{\omega}\right)$, then for $A=\omega$

- $F: A^{1} \rightarrow A$ is a term operation of $\mathbf{G} \Leftrightarrow F \in \mathrm{Alt}_{\omega}$;
- $F: A^{1} \rightarrow A$ is a local term operation of $\mathbf{G} \Leftrightarrow F: A \rightarrow A$ is one-to-one.
- $F: A \rightarrow A$ is an ultralocal term operation of \mathbf{G} $\Leftrightarrow F: A \rightarrow A$ is a permutation of finite support.

A clone that is not ultralocally closed

Example If $\mathbf{G}:=\left(\omega ; \operatorname{Alt}_{\omega}\right)$, then for $A=\omega$

- $F: A^{1} \rightarrow A$ is a term operation of $\mathbf{G} \Leftrightarrow F \in \mathrm{Alt}_{\omega}$;
- $F: A^{1} \rightarrow A$ is a local term operation of $\mathbf{G} \Leftrightarrow F: A \rightarrow A$ is one-to-one.
- $F: A \rightarrow A$ is an ultralocal term operation of \mathbf{G}
$\Leftrightarrow F: A \rightarrow A$ is a permutation of finite support.
Proof (using the characterization theorem for ultralocal term ops).

A clone that is not ultralocally closed

Example If $\mathbf{G}:=\left(\omega ; \operatorname{Alt}_{\omega}\right)$, then for $A=\omega$

- $F: A^{1} \rightarrow A$ is a term operation of $\mathbf{G} \Leftrightarrow F \in \mathrm{Alt}_{\omega}$;
- $F: A^{1} \rightarrow A$ is a local term operation of $\mathbf{G} \Leftrightarrow F: A \rightarrow A$ is one-to-one.
- $F: A \rightarrow A$ is an ultralocal term operation of \mathbf{G}
$\Leftrightarrow F: A \rightarrow A$ is a permutation of finite support.
Proof (using the characterization theorem for ultralocal term ops).
\Rightarrow :
\Leftarrow : Enough: $F=(u v)$ is an ul.term
op.

- each $\left.F\right|_{B}\left(B \in \mathcal{C}_{1}\right)$ moves
only finitely many elements
- so, F is a perm \& has finite supp

A clone that is not ultralocally closed

Example If $\mathbf{G}:=\left(\omega ; \operatorname{Alt}_{\omega}\right)$, then for $A=\omega$

- $F: A^{1} \rightarrow A$ is a term operation of $\mathbf{G} \Leftrightarrow F \in \mathrm{Alt}_{\omega}$;
- $F: A^{1} \rightarrow A$ is a local term operation of $\mathbf{G} \Leftrightarrow F: A \rightarrow A$ is one-to-one.
- $F: A \rightarrow A$ is an ultralocal term operation of \mathbf{G}
$\Leftrightarrow F: A \rightarrow A$ is a permutation of finite support.
Proof (using the characterization theorem for ultralocal term ops).
\Rightarrow :
op.

- each $\left.F\right|_{B}\left(B \in \mathcal{C}_{1}\right)$ moves only finitely many elements
- so, F is a perm \& has finite supp

A clone that is not ultralocally closed

Example If $\mathbf{G}:=\left(\omega ; \operatorname{Alt}_{\omega}\right)$, then for $A=\omega$

- $F: A^{1} \rightarrow A$ is a term operation of $\mathbf{G} \Leftrightarrow F \in \mathrm{Alt}_{\omega}$;
- $F: A^{1} \rightarrow A$ is a local term operation of $\mathbf{G} \Leftrightarrow F: A \rightarrow A$ is one-to-one.
- $F: A \rightarrow A$ is an ultralocal term operation of \mathbf{G}
$\Leftrightarrow F: A \rightarrow A$ is a permutation of finite support.
Proof (using the characterization theorem for ultralocal term ops).
\Rightarrow :
op.

- each $\left.F\right|_{B}\left(B \in \mathcal{C}_{1}\right)$ moves
only finitely many elements
- so, F is a perm \& has finite supp

A clone that is not ultralocally closed

Example If $\mathbf{G}:=\left(\omega ; \operatorname{Alt}_{\omega}\right)$, then for $A=\omega$

- $F: A^{1} \rightarrow A$ is a term operation of $\mathbf{G} \Leftrightarrow F \in$ Alt $_{\omega}$;
- $F: A^{1} \rightarrow A$ is a local term operation of $\mathbf{G} \Leftrightarrow F: A \rightarrow A$ is one-to-one.
- $F: A \rightarrow A$ is an ultralocal term operation of \mathbf{G}
$\Leftrightarrow F: A \rightarrow A$ is a permutation of finite support.
Proof (using the characterization theorem for ultralocal term ops).
\Rightarrow :
op.

- each $\left.F\right|_{B}\left(B \in \mathcal{C}_{1}\right)$ moves only finitely many elements
- so, F is a perm \& has finite supp
\Leftarrow : Enough: $F=(u v)$ is an ul.term
- Let $\mathcal{C}_{k}=\left\{X_{0}, \ldots, X_{k}\right\}$ partition A :

$X_{0} X_{1}$	X_{i}	X
	χ_{i}	
	-	
-	a	

- $\left.f\right|_{B}=\left.(f \circ(a b))\right|_{B}$ if $X_{0} \subseteq B$

Application: Vaggione's Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then $\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$. That is, every $(<d)$-local term operation $F: A^{k} \rightarrow A$ of \mathbf{A} is a term operation of \mathbf{A}.

Application: Vaggione's Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then $\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$. That is, every $(<d)$-local term operation $F: A^{k} \rightarrow A$ of \mathbf{A} is a term operation of \mathbf{A}.
Proof. Let \mathcal{C}_{d} be a cover of A^{k} witnessing that F is $(<d)$-local.

Application: Vaggione's Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then $\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$. That is, every $(<d)$-local term operation $F: A^{k} \rightarrow A$ of \mathbf{A} is a term operation of \mathbf{A}.
Proof. Let \mathcal{C}_{d} be a cover of A^{k} witnessing that F is $(<d)$-local.
Prove by induction on $m \geq d$ that

- for every set B that is a union of at most m members of \mathcal{C}_{d} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.

Application: Vaggione's Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then $\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$. That is, every $(<d)$-local term operation $F: A^{k} \rightarrow A$ of \mathbf{A} is a term operation of \mathbf{A}.
Proof. Let \mathcal{C}_{d} be a cover of A^{k} witnessing that F is $(<d)$-local.
Prove by induction on $m \geq d$ that

- for every set B that is a union of at most m members of \mathcal{C}_{d} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.

Application: Vaggione's Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then
$\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$. That is, every $(<d)$-local term operation $F: A^{k} \rightarrow A$ of \mathbf{A} is a term operation of \mathbf{A}.
Proof. Let \mathcal{C}_{d} be a cover of A^{k} witnessing that F is $(<d)$-local.
Prove by induction on $m \geq d$ that

- for every set B that is a union of at most m members of \mathcal{C}_{d} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.
If true for $m-1$ and $B=\bigcup_{j=1}^{m} C_{j}\left(C_{j} \in \mathcal{C}_{d}\right)$,

Application: Vaggione's Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then
$\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$. That is, every $(<d)$-local term operation $F: A^{k} \rightarrow A$ of \mathbf{A} is a term operation of \mathbf{A}.
Proof. Let \mathcal{C}_{d} be a cover of A^{k} witnessing that F is $(<d)$-local.
Prove by induction on $m \geq d$ that

- for every set B that is a union of at most m members of \mathcal{C}_{d} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.
If true for $m-1$ and $B=\bigcup_{j=1}^{m} C_{j}\left(C_{j} \in \mathcal{C}_{d}\right)$, let $\hat{C}_{i}:=\bigcup_{j \neq i} C_{j}$

Application: Vaggione's Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then
$\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$. That is, every $(<d)$-local term operation $F: A^{k} \rightarrow A$ of \mathbf{A} is a term operation of \mathbf{A}.
Proof. Let \mathcal{C}_{d} be a cover of A^{k} witnessing that F is $(<d)$-local.
Prove by induction on $m \geq d$ that

- for every set B that is a union of at most m members of \mathcal{C}_{d} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.
If true for $m-1$ and $B=\bigcup_{j=1}^{m} C_{j}\left(C_{j} \in \mathcal{C}_{d}\right)$, let $\hat{C}_{i}:=\bigcup_{j \neq i} C_{j}$ and let t_{i} be an n-ary term op with $\left.f\right|_{\hat{C}_{i}}=\left.t_{i}\right|_{\hat{C}_{i}}(1 \leq i \leq d)$.

Application: Vaggione's Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then
$\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$. That is, every $(<d)$-local term operation $F: A^{k} \rightarrow A$ of \mathbf{A} is a term operation of \mathbf{A}.
Proof. Let \mathcal{C}_{d} be a cover of A^{k} witnessing that F is $(<d)$-local.
Prove by induction on $m \geq d$ that

- for every set B that is a union of at most m members of \mathcal{C}_{d} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.
If true for $m-1$ and $B=\bigcup_{j=1}^{m} C_{j}\left(C_{j} \in \mathcal{C}_{d}\right)$, let $\hat{C}_{i}:=\bigcup_{j \neq i} C_{j}$ and let t_{i} be an n-ary term op with $\left.f\right|_{\hat{C}_{i}}=\left.t_{i}\right|_{\hat{C}_{i}}(1 \leq i \leq d)$. For $t(\bar{x}):=u\left(t_{1}(\bar{x}), \ldots, t_{d}(\bar{x})\right)$,

Application: Vaggione's Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then
$\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$. That is, every $(<d)$-local term operation $F: A^{k} \rightarrow A$ of \mathbf{A} is a term operation of \mathbf{A}.
Proof. Let \mathcal{C}_{d} be a cover of A^{k} witnessing that F is $(<d)$-local.
Prove by induction on $m \geq d$ that

- for every set B that is a union of at most m members of \mathcal{C}_{d} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.
If true for $m-1$ and $B=\bigcup_{j=1}^{m} C_{j}\left(C_{j} \in \mathcal{C}_{d}\right)$, let $\hat{C}_{i}:=\bigcup_{j \neq i} C_{j}$ and let t_{i} be an n-ary term op with $\left.f\right|_{\hat{C}_{i}}=\left.t_{i}\right|_{\hat{C}_{i}}(1 \leq i \leq d)$. For $t(\bar{x}):=u\left(t_{1}(\bar{x}), \ldots, t_{d}(\bar{x})\right)$,

$$
\left.f\right|_{C_{j}}=\left.t\right|_{C_{j}} \quad \text { for every } j=1, \ldots, m
$$

Application: Vaggione's Theorem

Corollary. (Vaggione, 2018) If A has a d-ary NU term u, then
$\Gamma_{d}^{*}(\mathbf{A})=\Gamma_{\infty}(\mathbf{A})$. That is, every $(<d)$-local term operation $F: A^{k} \rightarrow A$ of \mathbf{A} is a term operation of \mathbf{A}.
Proof. Let \mathcal{C}_{d} be a cover of A^{k} witnessing that F is $(<d)$-local.
Prove by induction on $m \geq d$ that

- for every set B that is a union of at most m members of \mathcal{C}_{d} there exists a term operation t of \mathbf{A} such that $\left.f\right|_{B}=\left.t\right|_{B}$.
If true for $m-1$ and $B=\bigcup_{j=1}^{m} C_{j}\left(C_{j} \in \mathcal{C}_{d}\right)$, let $\hat{C}_{i}:=\bigcup_{j \neq i} C_{j}$ and let t_{i} be an n-ary term op with $\left.f\right|_{\hat{C}_{i}}=\left.t_{i}\right|_{\hat{C}_{i}}(1 \leq i \leq d)$. For $t(\bar{x}):=u\left(t_{1}(\bar{x}), \ldots, t_{d}(\bar{x})\right)$,

$$
\left.f\right|_{C_{j}}=\left.t\right|_{C_{j}} \quad \text { for every } j=1, \ldots, m
$$

hence $\left.f\right|_{B}=\left.t\right|_{B}$.

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow)

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow)

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow) $K:=\operatorname{End}\left({ }_{R} \mathbf{M}\right)$ is division ring, w.l.o.g.: $R \subseteq \operatorname{End}\left(\mathbf{M}_{K}\right)$, and $\operatorname{End}\left(\mathbf{M}_{K}\right)$ is the set of local term operations of ${ }_{R} \mathbf{M}$.

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow) $K:=\operatorname{End}\left({ }_{R} \mathbf{M}\right)$ is division ring, w.l.o.g.: $R \subseteq \operatorname{End}\left(\mathbf{M}_{K}\right)$, and $\operatorname{End}\left(\mathbf{M}_{K}\right)$ is the set of local term operations of ${ }_{R} \mathbf{M}$.
- (F ultralocal term op + Characterization Theorem for $d=1 \Rightarrow$)

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow) $K:=\operatorname{End}\left({ }_{R} \mathbf{M}\right)$ is division ring, w.l.o.g.: $R \subseteq \operatorname{End}\left(\mathbf{M}_{K}\right)$, and $\operatorname{End}\left(\mathbf{M}_{K}\right)$ is the set of local term operations of ${ }_{R} \mathbf{M}$.
- (F ultralocal term op + Characterization Theorem for $d=1 \Rightarrow$)

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow) $K:=\operatorname{End}\left({ }_{R} \mathbf{M}\right)$ is division ring, w.l.o.g.: $R \subseteq \operatorname{End}\left(\mathbf{M}_{K}\right)$, and $\operatorname{End}\left(\mathbf{M}_{K}\right)$ is the set of local term operations of ${ }_{R} \mathbf{M}$.
- (F ultralocal term op + Characterization Theorem for $d=1 \Rightarrow$) There exist a finite cover $\left\{U_{1}, \ldots, U_{\ell}\right\}$ of M and elements $r_{1}, \ldots, r_{\ell} \in R$ such that $F(x)=r_{i} x$ for all i and $x \in U_{i}$.

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow) $K:=\operatorname{End}\left({ }_{R} \mathbf{M}\right)$ is division ring, w.l.o.g.: $R \subseteq \operatorname{End}\left(\mathbf{M}_{K}\right)$, and $\operatorname{End}\left(\mathbf{M}_{K}\right)$ is the set of local term operations of ${ }_{R} \mathbf{M}$.
- (F ultralocal term op + Characterization Theorem for $d=1 \Rightarrow$)

There exist a finite cover $\left\{U_{1}, \ldots, U_{\ell}\right\}$ of M and elements $r_{1}, \ldots, r_{\ell} \in R$ such that $F(x)=r_{i} x$ for all i and $x \in U_{i}$.

- $F \in \operatorname{End}\left(\mathbf{M}_{K}\right)$, since F is an ultralocal (hence local) term op of ${ }_{R} \mathbf{M}$.

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow) $K:=\operatorname{End}\left({ }_{R} \mathbf{M}\right)$ is division ring, w.l.o.g.: $R \subseteq \operatorname{End}\left(\mathbf{M}_{K}\right)$, and $\operatorname{End}\left(\mathbf{M}_{K}\right)$ is the set of local term operations of ${ }_{R} \mathbf{M}$.
- (F ultralocal term op + Characterization Theorem for $d=1 \Rightarrow$)

There exist a finite cover $\left\{U_{1}, \ldots, U_{\ell}\right\}$ of M and elements $r_{1}, \ldots, r_{\ell} \in R$ such that $F(x)=r_{i} x$ for all i and $x \in U_{i}$.

- $F \in \operatorname{End}\left(\mathbf{M}_{K}\right)$, since F is an ultralocal (hence local) term op of ${ }_{R} \mathbf{M}$.

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow) $K:=\operatorname{End}\left({ }_{R} \mathbf{M}\right)$ is division ring, w.l.o.g.: $R \subseteq \operatorname{End}\left(\mathbf{M}_{K}\right)$, and $\operatorname{End}\left(\mathbf{M}_{K}\right)$ is the set of local term operations of ${ }_{R} \mathbf{M}$.
- (F ultralocal term op + Characterization Theorem for $d=1 \Rightarrow$)

There exist a finite cover $\left\{U_{1}, \ldots, U_{\ell}\right\}$ of M and elements $r_{1}, \ldots, r_{\ell} \in R$ such that $F(x)=r_{i} x$ for all i and $x \in U_{i}$.

- $F \in \operatorname{End}\left(\mathbf{M}_{K}\right)$, since F is an ultralocal (hence local) term op of ${ }_{R} \mathbf{M}$.
- $F(x)=r_{i} x$ holds for all i and $x \in \operatorname{Span}_{K}\left(U_{i}\right)$.

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow) $K:=\operatorname{End}\left({ }_{R} \mathbf{M}\right)$ is division ring, w.l.o.g.: $R \subseteq \operatorname{End}\left(\mathbf{M}_{K}\right)$, and $\operatorname{End}\left(\mathbf{M}_{K}\right)$ is the set of local term operations of ${ }_{R} \mathbf{M}$.
- (F ultralocal term op + Characterization Theorem for $d=1 \Rightarrow$)

There exist a finite cover $\left\{U_{1}, \ldots, U_{\ell}\right\}$ of M and elements $r_{1}, \ldots, r_{\ell} \in R$ such that $F(x)=r_{i} x$ for all i and $x \in U_{i}$.

- $F \in \operatorname{End}\left(\mathbf{M}_{K}\right)$, since F is an ultralocal (hence local) term op of ${ }_{R} \mathbf{M}$.
- $F(x)=r_{i} x$ holds for all i and $x \in \operatorname{Span}_{K}\left(U_{i}\right)$.

Simple Modules

Theorem (Kearnes-Szendrei)

All ultralocal term operations of a simple module are term operations.
Proof: Enough to show:
If ${ }_{R} \mathbf{M}$ is an infinite simple R-module and $F: M^{1} \rightarrow M$ is a unary ultralocal term operation of ${ }_{R} \mathbf{M}$, then F is a term operation of ${ }_{R} \mathbf{M}$.

- (Schur's Lemma and Jacobson's Density Theorem \Rightarrow) $K:=\operatorname{End}\left({ }_{R} \mathbf{M}\right)$ is division ring, w.l.o.g.: $R \subseteq \operatorname{End}\left(\mathbf{M}_{K}\right)$, and $\operatorname{End}\left(\mathbf{M}_{K}\right)$ is the set of local term operations of ${ }_{R} \mathbf{M}$.
- (F ultralocal term op + Characterization Theorem for $d=1 \Rightarrow$)

There exist a finite cover $\left\{U_{1}, \ldots, U_{\ell}\right\}$ of M and elements $r_{1}, \ldots, r_{\ell} \in R$ such that $F(x)=r_{i} x$ for all i and $x \in U_{i}$.

- $F \in \operatorname{End}\left(\mathbf{M}_{K}\right)$, since F is an ultralocal (hence local) term op of ${ }_{R} \mathbf{M}$.
- $F(x)=r_{i} x$ holds for all i and $x \in \operatorname{Span}_{K}\left(U_{i}\right)$.
- Hence, we may assume that U_{1}, \ldots, U_{r} are subspaces of \mathbf{M}_{K}.

Simple Modules (Cont'd)

Proof (cont'd):

Simple Modules (Cont'd)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces.

Simple Modules (Cont'd)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces.

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.
- For finite K we use
B. H. Neumann's Theorem.

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.
- For finite K we use
B. H. Neumann's Theorem.

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.
- For finite K we use
B. H. Neumann's Theorem. If a group G has an irredundant finite cover consisting of left cosets $a_{i} H_{i}$ of subgroups H_{i} of G, then each H_{i} has finite index in G.

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.
- For finite K we use
B. H. Neumann's Theorem. If a group G has an irredundant finite cover consisting of left cosets $a_{i} H_{i}$ of subgroups H_{i} of G, then each H_{i} has finite index in G.
- Thus, we may assume U_{1}, \ldots, U_{ℓ} have finite codimension in \mathbf{M}_{K}.

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.
- For finite K we use
B. H. Neumann's Theorem. If a group G has an irredundant finite cover consisting of left cosets $a_{i} H_{i}$ of subgroups H_{i} of G, then each H_{i} has finite index in G.
- Thus, we may assume U_{1}, \ldots, U_{ℓ} have finite codimension in \mathbf{M}_{K}.

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.
- For finite K we use
B. H. Neumann's Theorem. If a group G has an irredundant finite cover consisting of left cosets $a_{i} H_{i}$ of subgroups H_{i} of G, then each H_{i} has finite index in G.
- Thus, we may assume U_{1}, \ldots, U_{ℓ} have finite codimension in \mathbf{M}_{K}.
- Let $U:=\bigcap_{i=1}^{\ell} U_{i} ; U$ also has finite codimension in \mathbf{M}_{K}.

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.
- For finite K we use
B. H. Neumann's Theorem. If a group G has an irredundant finite cover consisting of left cosets $a_{i} H_{i}$ of subgroups H_{i} of G, then each H_{i} has finite index in G.
- Thus, we may assume U_{1}, \ldots, U_{ℓ} have finite codimension in \mathbf{M}_{K}.
- Let $U:=\bigcap_{i=1}^{\ell} U_{i} ; U$ also has finite codimension in \mathbf{M}_{K}.

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.
- For finite K we use
B. H. Neumann's Theorem. If a group G has an irredundant finite cover consisting of left cosets $a_{i} H_{i}$ of subgroups H_{i} of G, then each H_{i} has finite index in G.
- Thus, we may assume U_{1}, \ldots, U_{ℓ} have finite codimension in \mathbf{M}_{K}.
- Let $U:=\bigcap_{i=1}^{\ell} U_{i} ; U$ also has finite codimension in \mathbf{M}_{K}.
- F is a term operation of ${ }_{R} \mathbf{M}$ if and only if $F-r_{1}$ is;

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.
- For finite K we use
B. H. Neumann's Theorem. If a group G has an irredundant finite cover consisting of left cosets $a_{i} H_{i}$ of subgroups H_{i} of G, then each H_{i} has finite index in G.
- Thus, we may assume U_{1}, \ldots, U_{ℓ} have finite codimension in \mathbf{M}_{K}.
- Let $U:=\bigcap_{i=1}^{\ell} U_{i} ; U$ also has finite codimension in \mathbf{M}_{K}.
- F is a term operation of ${ }_{R} \mathbf{M}$ if and only if $F-r_{1}$ is;

Simple Modules (Cont’d)

Proof (cont'd):

- For infinite K, \mathbf{M}_{K} is not the union of finitely many proper subspaces. Thus, $U_{j}=M$ for some j; hence $f=r_{j} \in R$ is a term operation of ${ }_{R} \mathbf{M}$.
- For finite K we use
B. H. Neumann's Theorem. If a group G has an irredundant finite cover consisting of left cosets $a_{i} H_{i}$ of subgroups H_{i} of G, then each H_{i} has finite index in G.
- Thus, we may assume U_{1}, \ldots, U_{ℓ} have finite codimension in \mathbf{M}_{K}.
- Let $U:=\bigcap_{i=1}^{\ell} U_{i} ; U$ also has finite codimension in \mathbf{M}_{K}.
- F is a term operation of ${ }_{R} \mathbf{M}$ if and only if $F-r_{1}$ is;
therefore, we may replace $F, r_{1}, r_{2}, \ldots, r_{\ell}$ by
$F-r_{1}, r_{1}-r_{1}=0, r_{2}-r_{1}, \ldots, r_{\ell}-r_{1}$.

Simple Modules (Cont’d)

Proof (cont'd):

Simple Modules (Cont'd)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U;

Simple Modules (Cont'd)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U;

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Claim. If (*) holds, then

$$
F=t_{1} r_{1}+\ldots+t_{\ell} r_{\ell} \quad \text { for some } t_{1}, \ldots, t_{\ell} \in R
$$

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Claim. If $(*)$ holds, then

$$
F=t_{1} r_{1}+\ldots+t_{\ell} r_{\ell} \quad \text { for some } t_{1}, \ldots, t_{\ell} \in R
$$

Idea of Proof: We actually show this in two steps:

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Claim. If $(*)$ holds, then

$$
F=t_{1} r_{1}+\ldots+t_{\ell} r_{\ell} \quad \text { for some } t_{1}, \ldots, t_{\ell} \in R
$$

Idea of Proof: We actually show this in two steps:
(1) there exist $s_{1}, \ldots, s_{\ell} \in R$ such that $\operatorname{ker}\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right) \subseteq \operatorname{ker}(F)$, and

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Claim. If $(*)$ holds, then

$$
F=t_{1} r_{1}+\ldots+t_{\ell} r_{\ell} \quad \text { for some } t_{1}, \ldots, t_{\ell} \in R
$$

Idea of Proof: We actually show this in two steps:
(1) there exist $s_{1}, \ldots, s_{\ell} \in R$ such that $\operatorname{ker}\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right) \subseteq \operatorname{ker}(F)$, and

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Claim. If $(*)$ holds, then

$$
F=t_{1} r_{1}+\ldots+t_{\ell} r_{\ell} \quad \text { for some } t_{1}, \ldots, t_{\ell} \in R
$$

Idea of Proof: We actually show this in two steps:
(1) there exist $s_{1}, \ldots, s_{\ell} \in R$ such that $\operatorname{ker}\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right) \subseteq \operatorname{ker}(F)$, and
(2) there exists $t \in R$ such that $t\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right)=F$.

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Claim. If $(*)$ holds, then

$$
F=t_{1} r_{1}+\ldots+t_{\ell} r_{\ell} \quad \text { for some } t_{1}, \ldots, t_{\ell} \in R
$$

Idea of Proof: We actually show this in two steps:
(1) there exist $s_{1}, \ldots, s_{\ell} \in R$ such that $\operatorname{ker}\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right) \subseteq \operatorname{ker}(F)$, and
(2) there exists $t \in R$ such that $t\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right)=F$.

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Claim. If $(*)$ holds, then

$$
F=t_{1} r_{1}+\ldots+t_{\ell} r_{\ell} \quad \text { for some } t_{1}, \ldots, t_{\ell} \in R
$$

Idea of Proof: We actually show this in two steps:
(1) there exist $s_{1}, \ldots, s_{\ell} \in R$ such that $\operatorname{ker}\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right) \subseteq \operatorname{ker}(F)$, and
(2) there exists $t \in R$ such that $t\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right)=F$.

Trick:

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Claim. If (*) holds, then

$$
F=t_{1} r_{1}+\ldots+t_{\ell} r_{\ell} \quad \text { for some } t_{1}, \ldots, t_{\ell} \in R
$$

Idea of Proof: We actually show this in two steps:
(1) there exist $s_{1}, \ldots, s_{\ell} \in R$ such that $\operatorname{ker}\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right) \subseteq \operatorname{ker}(F)$, and
(2) there exists $t \in R$ such that $t\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right)=F$.

Trick:

- Find endomorphisms $\sigma_{1}, \ldots, \sigma_{\ell}, \tau \in \operatorname{End}\left(\mathbf{M}_{K}\right)$ which satisfy (1)-(2) in place of $s_{1}, \ldots, s_{\ell}, t$.

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Claim. If (*) holds, then

$$
F=t_{1} r_{1}+\ldots+t_{\ell} r_{\ell} \quad \text { for some } t_{1}, \ldots, t_{\ell} \in R
$$

Idea of Proof: We actually show this in two steps:
(1) there exist $s_{1}, \ldots, s_{\ell} \in R$ such that $\operatorname{ker}\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right) \subseteq \operatorname{ker}(F)$, and
(2) there exists $t \in R$ such that $t\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right)=F$.

Trick:

- Find endomorphisms $\sigma_{1}, \ldots, \sigma_{\ell}, \tau \in \operatorname{End}\left(\mathbf{M}_{K}\right)$ which satisfy (1)-(2) in place of $s_{1}, \ldots, s_{\ell}, t$.

Simple Modules (Cont’d)

Proof (cont'd):

- Thus, we may assume that $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are 0 on U; hence, $(*)$ the ranges of $F, r_{1}, r_{2}, \ldots, r_{\ell}$ are finite dimensional subspaces of \mathbf{M}_{K}.
- The proof of the following claim finishes the proof of the theorem:

Claim. If $(*)$ holds, then

$$
F=t_{1} r_{1}+\ldots+t_{\ell} r_{\ell} \quad \text { for some } t_{1}, \ldots, t_{\ell} \in R
$$

Idea of Proof: We actually show this in two steps:
(1) there exist $s_{1}, \ldots, s_{\ell} \in R$ such that $\operatorname{ker}\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right) \subseteq \operatorname{ker}(F)$, and
(2) there exists $t \in R$ such that $t\left(s_{1} r_{1}+\cdots+s_{\ell} r_{\ell}\right)=F$.

Trick:

- Find endomorphisms $\sigma_{1}, \ldots, \sigma_{\ell}, \tau \in \operatorname{End}\left(\mathbf{M}_{K}\right)$ which satisfy (1)-(2) in place of $s_{1}, \ldots, s_{\ell}, t$.
- Use that $\sigma_{1}, \ldots, \sigma_{\ell}, \tau$ are local term operations of ${ }_{R} \mathbf{M}$.

Additional remarks/questions

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$.

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$.

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
Choose X to be infinite,

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
Choose X to be infinite,

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X,

Additional remarks/questions

(0) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2. Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$,

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2. Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X.

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X. Result: From previous item, you get $2^{2^{|X|}}$ clones on X that are not ultralocally closed.

Additional remarks/questions

(0) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X. Result: From previous item, you get $2^{2^{|X|}}$ clones on X that are not ultralocally closed.
(3) There are also $2^{2^{|X|}}$ clones on X that ARE ultralocally closed.

Additional remarks/questions

(0) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X. Result: From previous item, you get $2^{2^{|X|}}$ clones on X that are not ultralocally closed.
(3) There are also $2^{2^{|X|}}$ clones on X that ARE ultralocally closed.

Additional remarks/questions

(0) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X. Result: From previous item, you get $2^{2^{|X|}}$ clones on X that are not ultralocally closed.
(3) There are also $2^{||X|}$ clones on X that ARE ultralocally closed. Argument: Choose an ultrafilter \mathcal{U} on X.

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X. Result: From previous item, you get $2^{2^{[X]}}$ clones on X that are not ultralocally closed.
(3) There are also $2^{||X|}$ clones on X that ARE ultralocally closed. Argument: Choose an ultrafilter \mathcal{U} on X. Let $C_{\mathcal{U}}$ to be the clone of operations preserving \mathcal{U}-measure-zero sets.

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X. Result: From previous item, you get $2^{2^{|X|}}$ clones on X that are not ultralocally closed.
(3) There are also $2^{||X|}$ clones on X that ARE ultralocally closed. Argument: Choose an ultrafilter \mathcal{U} on X. Let $C_{\mathcal{U}}$ to be the clone of operations preserving \mathcal{U}-measure-zero sets. Distinct ultrafilters give distinct maximal clones on X.

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X. Result: From previous item, you get $2^{2^{|X|}}$ clones on X that are not ultralocally closed.
(3) There are also $2^{||X|}$ clones on X that ARE ultralocally closed. Argument: Choose an ultrafilter \mathcal{U} on X. Let $C_{\mathcal{U}}$ to be the clone of operations preserving \mathcal{U}-measure-zero sets. Distinct ultrafilters give distinct maximal clones on X. Not hard to use our characterization to prove they are ultralocally closed.

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X. Result: From previous item, you get $2^{2^{|X|}}$ clones on X that are not ultralocally closed.
(3) There are also $2^{||X|}$ clones on X that ARE ultralocally closed. Argument: Choose an ultrafilter \mathcal{U} on X. Let $C_{\mathcal{U}}$ to be the clone of operations preserving \mathcal{U}-measure-zero sets. Distinct ultrafilters give distinct maximal clones on X. Not hard to use our characterization to prove they are ultralocally closed.
(9) Don't know if every module has an ultralocally closed clone.

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X. Result: From previous item, you get $2^{2^{|X|}}$ clones on X that are not ultralocally closed.
(3) There are also $2^{||X|}$ clones on X that ARE ultralocally closed. Argument: Choose an ultrafilter \mathcal{U} on X. Let $C_{\mathcal{U}}$ to be the clone of operations preserving \mathcal{U}-measure-zero sets. Distinct ultrafilters give distinct maximal clones on X. Not hard to use our characterization to prove they are ultralocally closed.
(9) Don't know if every module has an ultralocally closed clone.

Additional remarks/questions

(1) (Remark) If C is a clone on X and D is a clone on Y, then $C \times D$ may be viewed as a clone on $X \times Y$. $\Gamma_{\kappa}^{*}(C \times D)=\Gamma_{\kappa}^{*}(C) \times \Gamma_{\kappa}^{*}(D)$.
(2) Choose X to be infinite, choose C to be NOT ultralocally closed on X, choose $Y=X$, and let D run through all $2^{2^{|X|}}$ clones on X. Result: From previous item, you get $2^{2^{|X|}}$ clones on X that are not ultralocally closed.
(3) There are also $2^{||X|}$ clones on X that ARE ultralocally closed. Argument: Choose an ultrafilter \mathcal{U} on X. Let $C_{\mathcal{U}}$ to be the clone of operations preserving \mathcal{U}-measure-zero sets. Distinct ultrafilters give distinct maximal clones on X. Not hard to use our characterization to prove they are ultralocally closed.
(9) Don't know if every module has an ultralocally closed clone.
(0) More generally, don't know if every algebra with a cube term has an ultralocally closed clone.

