# How Aliens Do Math 

J. B. Nation

University of Hawai'i at Mānoa

ALH, May 2018



## Counting on Earth

Why is there Arithmetic?
J. B. Nation

## Counting on Earth

Why is there Arithmetic?

- Perception


## Counting on Earth

Why is there Arithmetic?

- Perception
- Language


## Counting on Earth

Why is there Arithmetic?

- Perception
- Language
- Perspective


## Math on Earth

## Easy problems

## Math on Earth

## Easy problems

- In $\mathbb{N}$, solve $x+7=4$.


## Math on Earth

Easy problems

- In $\mathbb{N}$, solve $x+7=4$.
- $\operatorname{In} \mathbb{Z}$, solve $3 x=1$.


## Math on Earth

## Easy problems

- In $\mathbb{N}$, solve $x+7=4$.
- $\operatorname{In} \mathbb{Z}$, solve $3 x=1$.
- $\ln \mathbb{Q}$, solve $x^{2}=2$.


## Math on Earth

Easy problems

- In $\mathbb{N}$, solve $x+7=4$.
- In $\mathbb{Z}$, solve $3 x=1$.
- $\ln \mathbb{Q}$, solve $x^{2}=2$.
- $\ln \mathbb{R}$, solve $x^{2}=-1$.


## Math on Earth

Easy problems

- In $\mathbb{N}$, solve $x+7=4$.
- In $\mathbb{Z}$, solve $3 x=1$.
- $\ln \mathbb{Q}$, solve $x^{2}=2$.
- $\ln \mathbb{R}$, solve $x^{2}=-1$.
- $\operatorname{In} \mathbb{C}$, solve $x^{5}+3 x+1=0$.


## Still on Earth

Algebras
An algebra is specified by

## Still on Earth

Algebras
An algebra is specified by

- a set


## Still on Earth

Algebras
An algebra is specified by

- a set
- operations on that set

Algebras
An algebra is specified by

- a set
- operations on that set
- distinguished elements or constants


## Still on Earth

Algebras
An algebra is specified by

- a set
- operations on that set
- distinguished elements or constants

Natural numbers
$\mathbb{N}=\langle N,+, \times, 0,1\rangle$

## Still on Earth

Algebras
An algebra is specified by

- a set
- operations on that set
- distinguished elements or constants

Natural numbers
$\mathbb{N}=\langle N,+, \times, 0,1\rangle$

Infinite cardinals
$\aleph_{0}, \aleph_{1}, \aleph_{2}, \ldots$ with

$$
\begin{aligned}
& x+y=\max (x, y) \\
& x \times y=\max (x, y)
\end{aligned}
$$

## Still on Earth

## Euclid

There are infinitely many primes in $\mathbb{N}$.

## Still on Earth

## Euclid

There are infinitely many primes in $\mathbb{N}$.

## Fundamental Theorem of Arithmetic

Every nonzero $n \in \mathbb{N}$ has a unique prime factorization.

## Still on Earth

## Euclid

There are infinitely many primes in $\mathbb{N}$.

## Fundamental Theorem of Arithmetic

Every nonzero $n \in \mathbb{N}$ has a unique prime factorization.

## Duh!

If $x \times y=0$, then $x=0$ or $y=0$.

## Mercury

## Integers modulo 2

## Mercury

## Integers modulo 2

$$
\mathbb{Z}_{2}=\langle\{0,1\},+, \times, 0,1\rangle
$$

## Mercury

Integers modulo 2

$$
\mathbb{Z}_{2}=\langle\{0,1\},+, \times, 0,1\rangle
$$

$$
\begin{array}{c|cc}
+ & 1 & 0 \\
\hline 1 & 0 & 1 \\
0 & 1 & 0 \\
& & \\
\times & 1 & 0 \\
\hline 1 & 1 & 0 \\
0 & 0 & 0
\end{array}
$$

## Mercury

Integers modulo 2

$$
\mathbb{Z}_{2}=\langle\{0,1\},+, \times, 0,1\rangle
$$



## Advantage

Algebra and logic (using XOR) are the same!

## Venus

## Integers modulo 10

## Venus

## Integers modulo 10 <br> $\mathbb{Z}_{10}=\langle\{0,1, \ldots, 8,9\},+,-, \times, 0,1\rangle$

## Venus

Integers modulo 10
$\mathbb{Z}_{10}=\langle\{0,1, \ldots, 8,9\},+,-, \times, 0,1\rangle$
Problems

## Venus

## Integers modulo 10

$$
\mathbb{Z}_{10}=\langle\{0,1, \ldots, 8,9\},+,-, \times, 0,1\rangle
$$

## Problems

- Solve $2 x=1$ on Venus


## Venus

## Integers modulo 10

$$
\mathbb{Z}_{10}=\langle\{0,1, \ldots, 8,9\},+,-, \times, 0,1\rangle
$$

## Problems

- Solve $2 x=1$ on Venus
- Solve $x^{2}=2$ on Venus


## Venus

## Integers modulo 10

$$
\mathbb{Z}_{10}=\langle\{0,1, \ldots, 8,9\},+,-, \times, 0,1\rangle
$$

## Problems

- Solve $2 x=1$ on Venus
- Solve $x^{2}=2$ on Venus


## Questions

## Venus

## Integers modulo 10

$$
\mathbb{Z}_{10}=\langle\{0,1, \ldots, 8,9\},+,-, \times, 0,1\rangle
$$

## Problems

- Solve $2 x=1$ on Venus
- Solve $x^{2}=2$ on Venus


## Questions

- How many prime numbers on Venus?


## Venus

## Integers modulo 10

$$
\mathbb{Z}_{10}=\langle\{0,1, \ldots, 8,9\},+,-, \times, 0,1\rangle
$$

## Problems

- Solve $2 x=1$ on Venus
- Solve $x^{2}=2$ on Venus


## Questions

- How many prime numbers on Venus?
- What is the Fundamental Theorem of Venutian Arithmetic?


## Venus

## Integers modulo 10

$$
\mathbb{Z}_{10}=\langle\{0,1, \ldots, 8,9\},+,-, \times, 0,1\rangle
$$

## Problems

- Solve $2 x=1$ on Venus
- Solve $x^{2}=2$ on Venus


## Questions

- How many prime numbers on Venus?
- What is the Fundamental Theorem of Venutian Arithmetic?
- When is $x \times y=0$ ?


## Mars



## Mars

## Integers modulo 5

## Mars

## Integers modulo 5

$$
\mathbb{Z}_{5}=\langle\{0,1,2,3,4\},+,-, \times, \div, 0,1\rangle
$$

## Mars

## Integers modulo 5

$$
\mathbb{Z}_{5}=\langle\{0,1,2,3,4\},+,-, \times, \div, 0,1\rangle
$$

## Problem

## Mars

## Integers modulo 5

$$
\mathbb{Z}_{5}=\langle\{0,1,2,3,4\},+,-, \times, \div, 0,1\rangle
$$

## Problem

Solve $2 x=1$ on Mars

## Mars

## Integers modulo 5

$$
\mathbb{Z}_{5}=\langle\{0,1,2,3,4\},+,-, \times, \div, 0,1\rangle
$$

## Problem

Solve $2 x=1$ on Mars
No problem! $\mathbb{Z}_{5}$ is a field.

## Mars

## Integers modulo 5

$$
\mathbb{Z}_{5}=\langle\{0,1,2,3,4\},+,-, \times, \div, 0,1\rangle
$$

## Problem

Solve $2 x=1$ on Mars
No problem! $\mathbb{Z}_{5}$ is a field.
Problem

## Mars

## Integers modulo 5

$$
\mathbb{Z}_{5}=\langle\{0,1,2,3,4\},+,-, \times, \div, 0,1\rangle
$$

## Problem

Solve $2 x=1$ on Mars
No problem! $\mathbb{Z}_{5}$ is a field.

## Problem

Solve $x^{2}=2$ on Mars

## Mars

## Integers modulo 5

$$
\mathbb{Z}_{5}=\langle\{0,1,2,3,4\},+,-, \times, \div, 0,1\rangle
$$

## Problem

Solve $2 x=1$ on Mars
No problem! $\mathbb{Z}_{5}$ is a field.

## Problem

Solve $x^{2}=2$ on Mars
Use Martian complex numbers $a+b u$ where $u^{2}=2$

## Jupiter

## On Jupiter, everything is BIG!

## Jupiter

## On Jupiter, everything is BIG!

## Arithmetic

$0,1,2,3, \ldots$ with

$$
\begin{aligned}
& x+y=\max (x, y) \\
& x \times y=\max (x, y)
\end{aligned}
$$

## Jupiter

## Arithmetic

- $x+y=\max (x, y)$
- $x \times y=\max (x, y)$


## Easy problems on Jupiter

## Jupiter

## Arithmetic

- $x+y=\max (x, y)$
- $x \times y=\max (x, y)$


## Easy problems on Jupiter

- Solve $x+4=7$.


## Jupiter

## Arithmetic

- $x+y=\max (x, y)$
- $x \times y=\max (x, y)$


## Easy problems on Jupiter

- Solve $x+4=7$.
- Solve $x+7=4$.


## Saturn, Uranus, Neptune

Famous for their rings, but also ...

## Semilattices

## Saturn, Uranus, Neptune

Famous for their rings, but also ...

## Semilattices

$$
\mathbb{S}=\langle S,+\rangle \text { satisfying }
$$

## Saturn, Uranus, Neptune

Famous for their rings, but also ...

## Semilattices

$$
\mathbb{S}=\langle S,+\rangle \text { satisfying }
$$

- $x+x=x$


## Saturn, Uranus, Neptune

Famous for their rings, but also ...

## Semilattices

$$
\mathbb{S}=\langle S,+\rangle \text { satisfying }
$$

- $x+x=x$
- $x+y=y+x$


## Saturn, Uranus, Neptune

Famous for their rings, but also ...

## Semilattices

$\mathbb{S}=\langle S,+\rangle$ satisfying

- $x+x=x$
- $x+y=y+x$
- $x+(y+z)=(x+y)+z$


## Saturn, Uranus, Neptune

Famous for their rings, but also ...

## Semilattices

$$
\mathbb{S}=\langle S,+\rangle \text { satisfying }
$$

- $x+x=x$
- $x+y=y+x$
- $x+(y+z)=(x+y)+z$


## Order

$x \leq y$ if and only if $x+y=y$

## Counting to Two on Saturn



## Counting to Two on Saturn



## Questions

$$
\text { - } 1+1=\text { ? }
$$

## Counting to Two on Saturn



## Questions

$$
\begin{aligned}
& \text { • } 1+1=\text { ? } \\
& \text { - } 1+1^{\prime}=\text { ? }
\end{aligned}
$$

## Counting to Two on Uranus



## Counting to Two on Uranus



## Question <br> $0+0^{\prime}=$ ?

## Counting to Two on Neptune




## Pluto

## Arithmetic

## Pluto

## Arithmetic

$$
\mathbb{T}=\langle T,+, \times\rangle \text { satisfying }
$$

## Pluto

## Arithmetic

$\mathbb{T}=\langle T,+, \times\rangle$ satisfying

- $x+y=x$


## Pluto

## Arithmetic

$$
\mathbb{T}=\langle T,+, \times\rangle \text { satisfying }
$$

- $x+y=x$
- $x \times y=y$


## Pluto

## Arithmetic

$\mathbb{T}=\langle T,+, \times\rangle$ satisfying

- $x+y=x$
- $x \times y=y$
- Lots of nice properties


## Pluto

## Arithmetic

$\mathbb{T}=\langle T,+, x\rangle$ satisfying

- $x+y=x$
- $x \times y=y$
- Lots of nice properties
- Easy to solve equations


## Arithmetic

- $x+y=x$
- $x \times y=y$


## Easy problems on Pluto

## Arithmetic

- $x+y=x$
- $x \times y=y$


## Easy problems on Pluto

- Solve $x+7=4$.


## Arithmetic

- $x+y=x$
- $x \times y=y$


## Easy problems on Pluto

- Solve $x+7=4$.
- Solve $7+x=4$.


## Pluto

## Arithmetic

- $x+y=x$
- $x \times y=y$


## Easy problems on Pluto

- Solve $x+7=4$.
- Solve $7+x=4$.
- Solve $5 x=2$.


## Pluto

## Arithmetic

- $x+y=x$
- $x \times y=y$


## Easy problems on Pluto

- Solve $x+7=4$.
- Solve $7+x=4$.
- Solve $5 x=2$.
- Solve $x 5=2$.


## Sedna

## Sedna

## Arithmetic

| $\star$ | $R$ | $P$ | $S$ |
| :--- | :--- | :--- | :--- |
| $R$ | $R$ | $P$ | $R$ |
| $P$ | $P$ | $P$ | $S$ |
| $S$ | $R$ | $S$ | $S$ |

## Quaor

## ?????????

## Quaor

?????????

## MAHALO!

