Promise Constraint Satisfaction Problems

Athena Sparks

CU Boulder
May 19, 2018

Mathematics
UNIVERSITY OF COLORADO BOULDER

The constraint satisfaction problem (CSP)

The constraint satisfaction problem (CSP)

Definition
Let Γ be a finite relational language and \mathbb{A} a Γ-structure.
$\operatorname{CSP}(\mathbb{A})$: Input: Φ a primitive positive Γ-sentence
Output: True, if $\mathbb{A} \models \Phi$
False, if $\mathbb{A} \not \vDash \Phi$

The constraint satisfaction problem (CSP)

Definition

Let Γ be a finite relational language and \mathbb{A} a Γ-structure.
$\operatorname{CSP}(\mathbb{A})$: Input: Φ a primitive positive Γ-sentence
Output: True, if $\mathbb{A} \models \Phi$
False, if $\mathbb{A} \not \vDash \Phi$

Feder-Vardi Dichotomy Conjecture
$\operatorname{CSP}(\mathbb{A})$ is either in P or NP-complete.

The promise constraint satisfaction problem (PCSP)

The promise constraint satisfaction problem (PCSP)

Definition

Let Γ be a finite relational language. Let \mathbb{A} and \mathbb{A}^{\prime} be Γ-structures and $h: \mathbb{A} \rightarrow \mathbb{A}^{\prime}$ a homomorphism.

The promise constraint satisfaction problem (PCSP)

Definition

Let Γ be a finite relational language. Let \mathbb{A} and \mathbb{A}^{\prime} be Γ-structures and $h: \mathbb{A} \rightarrow \mathbb{A}^{\prime}$ a homomorphism.
$\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$: Input: Φ a primitive positive Γ-sentence
Output: True, if $\mathbb{A} \vDash \Phi$
False, if $\mathbb{A}^{\prime} \notin \Phi$.

The promise constraint satisfaction problem (PCSP)

Definition

Let Γ be a finite relational language. Let \mathbb{A} and \mathbb{A}^{\prime} be Γ-structures and $h: \mathbb{A} \rightarrow \mathbb{A}^{\prime}$ a homomorphism.
$\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$: Input: Φ a primitive positive Γ-sentence
Output: True, if $\mathbb{A} \models \Phi$
False, if $\mathbb{A}^{\prime} \notin \Phi$.

Notes
(1) Since there is a homomorphism from $\mathbb{A} \rightarrow \mathbb{A}^{\prime}$, if $\mathbb{A} \models \Phi$, then $\mathbb{A}^{\prime} \models \Phi$.
(2) $\operatorname{PCSP}(\mathbb{A}, \mathbb{A})=\operatorname{CSP}(\mathbb{A})$.

Example: k-colorability
Let K_{k} be the complete graph on k vertices.

$$
G=\langle[n] ; E\rangle \text { is } k \text {-colorable } \Leftrightarrow K_{k} \vDash \exists x_{1} \cdots x_{n} \bigwedge_{(i, j) \in E} x_{i} \neq x_{j} .
$$

Example: k-colorability

Let K_{k} be the complete graph on k vertices.

$$
G=\langle[n] ; E\rangle \text { is } k \text {-colorable } \Leftrightarrow K_{k} \models \exists x_{1} \cdots x_{n} \bigwedge_{(i, j) \in E} x_{i} \neq x_{j} .
$$

$\operatorname{CSP}\left(K_{k}\right)$

True, if G is k-colorable False, if G is not k-colorable

Example: k-colorability

Let K_{k} be the complete graph on k vertices.

$$
G=\langle[n] ; E\rangle \text { is } k \text {-colorable } \Leftrightarrow K_{k} \models \exists x_{1} \cdots x_{n} \bigwedge_{(i, j) \in E} x_{i} \neq x_{j} .
$$

$\operatorname{CSP}\left(K_{k}\right)$
True, if G is k-colorable
False, if G is not k-colorable
$\operatorname{PCSP}\left(K_{k}, K_{n}\right)$ for $k \leq n$
True, if G is k-colorable
False, if G is not n-colorable

Algebraic Approach to CSPs

Algebraic Approach to CSPs

Polymorphism Clone
Let \mathbb{A} be a relational structure.

$$
\operatorname{Pol}(\mathbb{A}):=\bigcup_{k \in \mathbb{N}} \operatorname{Hom}\left(\mathbb{A}^{k}, \mathbb{A}\right)
$$

Algebraic Approach to CSPs

Polymorphism Clone
Let \mathbb{A} be a relational structure.

$$
\operatorname{Pol}(\mathbb{A}):=\bigcup_{k \in \mathbb{N}} \operatorname{Hom}\left(\mathbb{A}^{k}, \mathbb{A}\right)
$$

Note
(1) $\operatorname{Pol}(\mathbb{A})$ is closed under composition and contains all projection maps.
(2) $\operatorname{Pol}(\mathbb{A}) \subseteq \operatorname{Pol}(\mathbb{B})$, then $\operatorname{CSP}(\mathbb{B}) \leq_{p} \operatorname{CSP}(\mathbb{A})$.

Algebraic Approach to CSPs

Polymorphism Clone

Let \mathbb{A} be a relational structure.

$$
\operatorname{Pol}(\mathbb{A}):=\bigcup_{k \in \mathbb{N}} \operatorname{Hom}\left(\mathbb{A}^{k}, \mathbb{A}\right)
$$

Note

(1) $\operatorname{Pol}(\mathbb{A})$ is closed under composition and contains all projection maps.
(2) $\operatorname{Pol}(\mathbb{A}) \subseteq \operatorname{Pol}(\mathbb{B})$, then $\operatorname{CSP}(\mathbb{B}) \leq_{p} \operatorname{CSP}(\mathbb{A})$.

Theorem (Bulatov, Zhuk 2017)
Let \mathbb{A} be a finite relational structure with all constant relations. Then $\operatorname{CSP}(\mathbb{A})$ is in P if \mathbb{A} has a weak near-unanimity (WNU) polymorphism, and $\operatorname{CSP}(\mathbb{A})$ is NP-complete otherwise.

Schaefer's Theorem (1978)

Let \mathbb{A} be a relational structure over a two element domain. If $\operatorname{Pol}(\mathbb{A})$ contains one of the following:

- constant unary opertation 0
- constant unary opertation 1
- binary max
- binary min
- ternary majority
- ternary minority
then $\operatorname{CSP}(\mathbb{A})$ is solvable in polynomial time. Otherwise, $\operatorname{CSP}(\mathbb{A})$ is NP-complete.
$\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ compared to $\operatorname{CSP}(\mathbb{A}), \operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$

$\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ compared to $\operatorname{CSP}(\mathbb{A}), \operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$

$\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right) \leq_{p} \operatorname{CSP}(\mathbb{A}), \operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$
Given an instance Φ of $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$, then Φ is an instance of $\operatorname{CSP}(\mathbb{A})$ and of $\operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$. Either decides the $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$.

$\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ compared to $\operatorname{CSP}(\mathbb{A}), \operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$

$\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right) \leq_{p} \operatorname{CSP}(\mathbb{A}), \operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$
Given an instance Φ of $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$, then Φ is an instance of $\operatorname{CSP}(\mathbb{A})$ and of $\operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$. Either decides the $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$.

Sandwich Lemma

Let $\mathbb{A}, \mathbb{A}^{\prime}, \mathbb{B}$ be Γ-structures and $h: \mathbb{A} \rightarrow \mathbb{A}^{\prime}$ a homomorphism such that h factors through \mathbb{B}. Then $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right) \leq_{p} \operatorname{CSP}(\mathbb{B})$.

$\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ compared to $\operatorname{CSP}(\mathbb{A}), \operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$

$\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right) \leq_{p} \operatorname{CSP}(\mathbb{A}), \operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$
Given an instance Φ of $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$, then Φ is an instance of $\operatorname{CSP}(\mathbb{A})$ and of $\operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$. Either decides the $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$.

Sandwich Lemma
Let $\mathbb{A}, \mathbb{A}^{\prime}, \mathbb{B}$ be Γ-structures and $h: \mathbb{A} \rightarrow \mathbb{A}^{\prime}$ a homomorphism such that h factors through \mathbb{B}. Then $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right) \leq_{p} \operatorname{CSP}(\mathbb{B})$.

Proof.

Let Φ be an instance of $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$.

- If $\mathbb{A} \models \Phi$, then $\mathbb{B} \models \Phi$.
- If $\mathbb{A}^{\prime} \notin \Phi$, then $\mathbb{B} \not \vDash \Phi$.

Example

Let $\mathbb{A}, \mathbb{A}^{\prime}, \mathbb{B}$ be Boolean structures with a single 4-ary relation R with the following interpretations:
$R^{\mathbb{A}}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\} \quad R^{\mathbb{A}^{\prime}}=\{0,1\}^{4} \backslash\left\{\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)\right\}$
$R^{\mathbb{B}}=\left\{\bar{x} \in\{0,1\}^{4}:|\bar{x}|\right.$ is odd $\}$.

Example

Let $\mathbb{A}, \mathbb{A}^{\prime}, \mathbb{B}$ be Boolean structures with a single 4 -ary relation R with the following interpretations:
$R^{\mathbb{A}}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\} \quad R^{\mathbb{A}^{\prime}}=\{0,1\}^{4} \backslash\left\{\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)\right\}$
$R^{\mathbb{B}}=\left\{\bar{x} \in\{0,1\}^{4}:|\bar{x}|\right.$ is odd $\}$.
Note:

- $\operatorname{CSP}(\mathbb{A}), \operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$ are NP-complete
- $\operatorname{CSP}(\mathbb{B})$ is in P (has ternary minority polymorphism)
- $R^{\mathbb{A}} \subseteq R^{\mathbb{B}} \subseteq R^{\mathbb{A}^{\prime}}$.

Example

Let $\mathbb{A}, \mathbb{A}^{\prime}, \mathbb{B}$ be Boolean structures with a single 4 -ary relation R with the following interpretations:
$R^{\mathbb{A}}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\} \quad R^{\mathbb{A}^{\prime}}=\{0,1\}^{4} \backslash\left\{\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)\right\}$
$R^{\mathbb{B}}=\left\{\bar{x} \in\{0,1\}^{4}:|\bar{x}|\right.$ is odd $\}$.
Note:

- $\operatorname{CSP}(\mathbb{A}), \operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$ are NP-complete
- $\operatorname{CSP}(\mathbb{B})$ is in P (has ternary minority polymorphism)
- $R^{\mathbb{A}} \subseteq R^{\mathbb{B}} \subseteq R^{\mathbb{A}^{\prime}}$.

By the Sandwich Lemma, $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right) \leq_{p} \operatorname{CSP}(\mathbb{B}) \in \mathrm{P}$.

Algebraic Approach to PCSPs

Algebraic Approach to PCSPs

Polymorphisms
Let $\mathbb{A}, \mathbb{A}^{\prime}$ be relational structures over the same signature.

$$
\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right):=\bigcup_{k \in \mathbb{N}} \operatorname{Hom}\left(\mathbb{A}^{k}, \mathbb{A}^{\prime}\right)
$$

Algebraic Approach to PCSPs

Polymorphisms
Let $\mathbb{A}, \mathbb{A}^{\prime}$ be relational structures over the same signature.

$$
\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right):=\bigcup_{k \in \mathbb{N}} \operatorname{Hom}\left(\mathbb{A}^{k}, \mathbb{A}^{\prime}\right)
$$

$\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ is a clonoid
$\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ closed under taking minors. For $f: A^{k} \rightarrow B$ and $\sigma:[k] \rightarrow[n]$, $f^{\sigma}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)$ is a minor of f.

Algebraic Approach to PCSPs

Polymorphisms
Let $\mathbb{A}, \mathbb{A}^{\prime}$ be relational structures over the same signature.

$$
\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right):=\bigcup_{k \in \mathbb{N}} \operatorname{Hom}\left(\mathbb{A}^{k}, \mathbb{A}^{\prime}\right)
$$

$\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ is a clonoid
$\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ closed under taking minors. For $f: A^{k} \rightarrow B$ and $\sigma:[k] \rightarrow[n]$, $f^{\sigma}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)$ is a minor of f.

Note
$\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ is not closed under composition and does not contain projections.

PP-Definability

Let $\mathbb{A}, \mathbb{A}^{\prime}$ be Γ-structures. A pair $(P, Q) \in \mathcal{P}\left(A^{n}\right) \times \mathcal{P}\left(\left(A^{\prime}\right)^{n}\right)$ is pp-definable from $\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ if there exists a pp-formula $\exists \bar{y} \psi(\bar{x}, \bar{y})$ over Γ such that

- if $\bar{a} \in P$, then $\mathbb{A} \vDash \exists \bar{y} \psi(\bar{a}, \bar{y})$, and
- if $\mathbb{A}^{\prime} \models \exists \bar{y} \psi(\bar{b}, \bar{y})$, then $\bar{b} \in Q$.

PP-Definability

Let $\mathbb{A}, \mathbb{A}^{\prime}$ be Γ-structures. A pair $(P, Q) \in \mathcal{P}\left(A^{n}\right) \times \mathcal{P}\left(\left(A^{\prime}\right)^{n}\right)$ is pp-definable from $\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ if there exists a pp-formula $\exists \bar{y} \psi(\bar{x}, \bar{y})$ over Γ such that

- if $\bar{a} \in P$, then $\mathbb{A} \models \exists \bar{y} \psi(\bar{a}, \bar{y})$, and
- if $\mathbb{A}^{\prime} \models \exists \bar{y} \psi(\bar{b}, \bar{y})$, then $\bar{b} \in Q$.

Galois Correspondence $\left(\mathbb{B}, \mathbb{B}^{\prime}\right)$ is pp-definable from $\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ if and only if $\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right) \subseteq \operatorname{Pol}\left(\mathbb{B}, \mathbb{B}^{\prime}\right.$.

PP-Definability

Let $\mathbb{A}, \mathbb{A}^{\prime}$ be Γ-structures. A pair $(P, Q) \in \mathcal{P}\left(A^{n}\right) \times \mathcal{P}\left(\left(A^{\prime}\right)^{n}\right)$ is pp-definable from $\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ if there exists a pp-formula $\exists \bar{y} \psi(\bar{x}, \bar{y})$ over Γ such that

- if $\bar{a} \in P$, then $\mathbb{A} \models \exists \bar{y} \psi(\bar{a}, \bar{y})$, and
- if $\mathbb{A}^{\prime} \models \exists \bar{y} \psi(\bar{b}, \bar{y})$, then $\bar{b} \in Q$.

Galois Correspondence
$\left(\mathbb{B}, \mathbb{B}^{\prime}\right)$ is pp-definable from $\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ if and only if $\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right) \subseteq \operatorname{Pol}\left(\mathbb{B}, \mathbb{B}^{\prime}\right.$.

Theorem (Brakensiek, Guruswami, 2017)
If $\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right) \subseteq \operatorname{Pol}\left(\mathbb{B}, \mathbb{B}^{\prime}\right)$, then $\operatorname{PCSP}\left(\mathbb{B}, \mathbb{B}^{\prime}\right) \leq_{p} \operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$.

Folded Symmetric Boolean Case (Brakensiek, Guruswami)

Let Γ be a finite relational language, $\mathbb{A}, \mathbb{A}^{\prime}$ be Boolean Γ-structures, and $h: \mathbb{A} \rightarrow \mathbb{A}^{\prime}$ a homomorphism.

Folded Symmetric Boolean Case (Brakensiek, Guruswami)

Let Γ be a finite relational language, $\mathbb{A}, \mathbb{A}^{\prime}$ be Boolean Γ-structures, and $h: \mathbb{A} \rightarrow \mathbb{A}^{\prime}$ a homomorphism.

Important Functions

- $\mathrm{ZERO}_{k}(x)=0$

For k odd:

- $\operatorname{PAR}_{k}(x)=\bigoplus_{i=1}^{k} x_{i}$
- $\operatorname{ONE}_{k}(x)=1$
- $\operatorname{AND}_{k}(x)=\bigwedge_{i=1}^{k} x_{i}$
- $\operatorname{Maj}_{k}(x)= \begin{cases}1 & \sum_{i=1}^{k} x_{i}>k / 2 \\ 0 & \text { otherwise }\end{cases}$
- $\mathrm{OR}_{k}(x)=\bigvee_{i=1}^{k} x_{i}$
- $\operatorname{AT}_{k}(x)= \begin{cases}1 & \sum_{i=1}^{k}(-1)^{i-1} x_{i}>0 \\ 0 & \text { otherwise }\end{cases}$

Folded Symmetric Boolean Case (Brakensiek, Guruswami)

Lemma

If $\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ satisfies any one of the following:
(1) contains $\mathrm{ZERO}_{k}, \mathrm{ONE}_{k}, \mathrm{AND}_{k}, \mathrm{Or}_{k}, \overline{\mathrm{ZERO}}_{k}, \overline{\mathrm{ONE}}_{k}, \overline{\mathrm{AND}}_{k}$, or $\overline{\mathrm{OR}}_{k}$ for all k
(2) contains $\mathrm{PAR}_{k}, \mathrm{MAJ}_{k}, \mathrm{AT}_{k}, \overline{\mathrm{PAR}}_{k}, \overline{\mathrm{MAJ}}_{k}$, or $\overline{\mathrm{AT}}_{k}$ for all k odd then $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ is in P .

Folded Symmetric Boolean Case (Brakensiek, Guruswami)

Definitions

A function $f:\{0,1\}^{k} \rightarrow\{0,1\}$ is folded if $f(\neg x)=\neg f(x)$ for all $x \in\{0,1\}^{k}$.

A k-ary relation R is symmetric if for all $x \in R$ and permutations $\sigma:[k] \rightarrow[k]$, we have $\left(x_{\sigma(a)}, \ldots, x_{\sigma(k)}\right)$.

Folded Symmetric Boolean Case (Brakensiek, Guruswami)

Definitions
A function $f:\{0,1\}^{k} \rightarrow\{0,1\}$ is folded if $f(\neg x)=\neg f(x)$ for all $x \in\{0,1\}^{k}$.

A k-ary relation R is symmetric if for all $x \in R$ and permutations $\sigma:[k] \rightarrow[k]$, we have $\left(x_{\sigma(a)}, \ldots, x_{\sigma(k)}\right)$.

Theorem

If $\mathbb{A}, \mathbb{A}^{\prime}$ are symmetric and $\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ is folded, then if at least one of $\operatorname{PAR}_{k}, \operatorname{MAJ}_{k}, \mathrm{AT}_{k}, \overline{\operatorname{PAR}}_{k}, \overline{\operatorname{MAJ}}_{k}$, or $\overline{\mathrm{AT}}_{k}$ is in $\operatorname{Pol}(\mathbb{A}, \mathbb{A})$ for all k odd, then $\operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ is in P . Otherwise, it is NP-hard.

Proof Idea

For hardness use reduction from GapLabelCover.

More on Clonoids

More on Clonoids

Clonoid homomorphisms (cf. Barto, Opršal, Pinsker, 2017)
Let \mathcal{A} and \mathcal{B} be clonoids. A clonoid homomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is a mapping that
(1) preserves arities
(2) commutes with minors, that is $\varphi\left(f^{\sigma}\right)=(\varphi(f))^{\sigma}$ for any $f \in \mathcal{A}$ and $\sigma:[k] \rightarrow[n]$ where k is the arity of f and $n \in \mathbb{N}$.

More on Clonoids

Clonoid homomorphisms (cf. Barto, Opršal, Pinsker, 2017)
Let \mathcal{A} and \mathcal{B} be clonoids. A clonoid homomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is a mapping that
(1) preserves arities
(2) commutes with minors, that is $\varphi\left(f^{\sigma}\right)=(\varphi(f))^{\sigma}$ for any $f \in \mathcal{A}$ and $\sigma:[k] \rightarrow[n]$ where k is the arity of f and $n \in \mathbb{N}$.

Note
(2) is equivalent to preserving identities of height 1 , i.e.

$$
\varphi\left(f\left(\pi_{i_{1}}^{n}, \ldots, \pi_{i_{k}}^{n}\right)\right)=\varphi(f)\left(\pi_{i_{1}}^{n}, \ldots, \pi_{i_{k}}^{n}\right)
$$

for all $k, n \geq 1$, all $i_{1}, \ldots, i_{k} \in[n]$, and any k-ary operation $f \in \mathcal{A}$.

Let \mathcal{A} be a clonoid with domain A and codomain A^{\prime}.
Reflections of $\mathcal{A}, \mathrm{R}(\mathcal{A})$
All clonoids \mathcal{B} obtained as follows:
Given $h_{1}: B \rightarrow A, h_{2}: A^{\prime} \rightarrow B^{\prime}$, and $f \in \mathcal{A}$, say k-ary

$$
\begin{array}{cc}
A^{k} \xrightarrow{f} A^{\prime} & \begin{aligned}
\text { Define } g_{f}: B^{k} & \rightarrow B^{\prime} \\
h_{1} \uparrow & \\
B^{k} & \left(x_{1}, \ldots, x_{k}\right) \mapsto h_{2}\left(f\left(h_{1}\left(x_{1}\right), \ldots, h_{1}\left(x_{k}\right)\right)\right) \\
B^{\prime} & B^{\prime}
\end{aligned} \\
& \mathcal{B}:=\left\{g_{f} \mid f \in \mathcal{A}\right\}
\end{array}
$$

Let \mathcal{A} be a clonoid with domain A and codomain A^{\prime}.
Reflections of $\mathcal{A}, \mathrm{R}(\mathcal{A})$
All clonoids \mathcal{B} obtained as follows:
Given $h_{1}: B \rightarrow A, h_{2}: A^{\prime} \rightarrow B^{\prime}$, and $f \in \mathcal{A}$, say k-ary

$$
\begin{aligned}
& A^{k} \xrightarrow{f} A^{\prime} \quad \text { Define } g_{f}: B^{k} \rightarrow B^{\prime} \\
& \stackrel{h_{1} \uparrow}{B^{k} \underset{g_{f}}{ }} \stackrel{B^{\prime}}{\text { n }_{2}} \\
& \left(x_{1}, \ldots, x_{k}\right) \mapsto h_{2}\left(f\left(h_{1}\left(x_{1}\right), \ldots, h_{1}\left(x_{k}\right)\right)\right) \\
& \mathcal{B}:=\left\{g_{f} \mid f \in \mathcal{A}\right\}
\end{aligned}
$$

Powers of $\mathcal{A}, \mathrm{P}(\mathcal{A})$
All clonoids $\mathcal{A}^{n}:=\left\{f^{n}:\left(A^{n}\right)^{k} \rightarrow A^{n} \mid f \in \mathcal{A}, f\right.$-ary $\}$.

Let \mathcal{A} be a clonoid with domain A and codomain A^{\prime}.
Reflections of $\mathcal{A}, \mathrm{R}(\mathcal{A})$
All clonoids \mathcal{B} obtained as follows:
Given $h_{1}: B \rightarrow A, h_{2}: A^{\prime} \rightarrow B^{\prime}$, and $f \in \mathcal{A}$, say k-ary

$$
\begin{array}{ccc}
A^{k} \\
h_{1} \uparrow & & A^{\prime} \\
B^{k} & { }_{\text {gf }} & h_{2} \\
h^{\prime} & & \text { Define } g_{f}: B^{k} \\
& \rightarrow B^{\prime} \\
\left(x_{1}, \ldots, x_{k}\right) & \mapsto h_{2}\left(f\left(h_{1}\left(x_{1}\right), \ldots, h_{1}\left(x_{k}\right)\right)\right) \\
\mathcal{B}:=\left\{g_{f} \mid f \in \mathcal{A}\right\}
\end{array}
$$

Powers of $\mathcal{A}, \mathrm{P}(\mathcal{A})$
All clonoids $\mathcal{A}^{n}:=\left\{f^{n}:\left(A^{n}\right)^{k} \rightarrow A^{n} \mid f \in \mathcal{A}, f\right.$-ary $\}$.

Extensions of $\mathcal{A}, \mathrm{E}(\mathcal{A})$
All clonoids $\mathcal{B} \supseteq \mathcal{A}$.

Tying it all together

Tying it all together

Theorem
Let $\mathbb{A}, \mathbb{A}^{\prime}$ be Γ-structures, $\mathbb{B}, \mathbb{B}^{\prime}$ be Δ-structures, and $\mathcal{A}=\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ and $\mathcal{B}=\operatorname{Pol}\left(\mathbb{B}, \mathbb{B}^{\prime}\right)$. Then $\mathcal{B} \in \operatorname{ERP}(\mathcal{A})$ if and only if there exists a clonoid homomorphism $\mathcal{A} \rightarrow \mathcal{B}$.

Tying it all together

Theorem
Let $\mathbb{A}, \mathbb{A}^{\prime}$ be Γ-structures, $\mathbb{B}, \mathbb{B}^{\prime}$ be Δ-structures, and $\mathcal{A}=\operatorname{Pol}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$ and $\mathcal{B}=\operatorname{Pol}\left(\mathbb{B}, \mathbb{B}^{\prime}\right)$. Then $\mathcal{B} \in \operatorname{ERP}(\mathcal{A})$ if and only if there exists a clonoid homomorphism $\mathcal{A} \rightarrow \mathcal{B}$.

Corollary
If either of the above hold, then $\operatorname{PCSP}\left(\mathbb{B}, \mathbb{B}^{\prime}\right) \leq_{p} \operatorname{PCSP}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$.

Open Problems

Open Problems

- Classify complexity of PCSP on Boolean structures.

Open Problems

- Classify complexity of PCSP on Boolean structures.
- What are the clonoids on $\{0,1\}$?

Open Problems

- Classify complexity of PCSP on Boolean structures.
- What are the clonoids on $\{0,1\}$?
- Is there a more general concept than clonoid homomorphisms that gives polytime reductions between PCSPs?

