Promise Constraint Satisfaction Problems

Athena Sparks

CU Boulder

May 19, 2018

Mathematics

UNIVERSITY OF COLORADO BOULDER

CSP

The constraint satisfaction problem (CSP)

メロト メポト メヨト メヨト

CSP

The constraint satisfaction problem (CSP)

Definition

Let Γ be a finite relational language and \mathbb{A} a Γ -structure.

 $CSP(\mathbb{A})$: Input: Φ a primitive positive Γ -sentence Output: True, if $\mathbb{A} \models \Phi$ False, if $\mathbb{A} \not\models \Phi$

CSP

The constraint satisfaction problem (CSP)

Definition

Let Γ be a finite relational language and \mathbb{A} a Γ -structure.

 $CSP(\mathbb{A})$: Input: Φ a primitive positive Γ -sentence Output: True, if $\mathbb{A} \models \Phi$ False, if $\mathbb{A} \not\models \Phi$

Feder-Vardi Dichotomy Conjecture $CSP(\mathbb{A})$ is either in P or NP-complete.

イロト イポト イヨト イヨト

Definition

Let Γ be a finite relational language. Let $\mathbb A$ and $\mathbb A'$ be $\Gamma\text{-structures}$ and $h : \mathbb{A} \to \mathbb{A}'$ a homomorphism.

Definition

Let Γ be a finite relational language. Let \mathbb{A} and \mathbb{A}' be Γ -structures and $h: \mathbb{A} \to \mathbb{A}'$ a homomorphism.

PCSP(\mathbb{A}, \mathbb{A}'): Input: Φ a primitive positive Γ -sentence Output: True, if $\mathbb{A} \models \Phi$ False, if $\mathbb{A}' \not\models \Phi$.

Definition

Let Γ be a finite relational language. Let \mathbb{A} and \mathbb{A}' be Γ -structures and $h: \mathbb{A} \to \mathbb{A}'$ a homomorphism.

PCSP(\mathbb{A}, \mathbb{A}'): Input: Φ a primitive positive Γ -sentence Output: True, if $\mathbb{A} \models \Phi$ False, if $\mathbb{A}' \not\models \Phi$.

Notes

1 Since there is a homomorphism from $\mathbb{A} \to \mathbb{A}'$, if $\mathbb{A} \models \Phi$, then $\mathbb{A}' \models \Phi$. 2 $PCSP(\mathbb{A},\mathbb{A}) = CSP(\mathbb{A}).$

Example: k-colorability

Let K_k be the complete graph on k vertices.

$$G = \langle [n]; E
angle$$
 is k-colorable \Leftrightarrow $K_k \models \exists x_1 \cdots x_n \bigwedge_{(i,j) \in E} x_i \neq x_j$.

Example: k-colorability

Let K_k be the complete graph on k vertices.

$$G = \langle [n]; E \rangle$$
 is k-colorable \Leftrightarrow $K_k \models \exists x_1 \cdots x_n \bigwedge_{(i,j) \in E} x_i \neq x_j.$

$CSP(K_k)$ True, if G is k-colorable False, if G is not k-colorable

Example: k-colorability

Let K_k be the complete graph on k vertices.

$$G = \langle [n]; E \rangle$$
 is k-colorable $\Leftrightarrow K_k \models \exists x_1 \cdots x_n \bigwedge_{(i,j) \in E} x_i \neq x_j.$

 $CSP(K_k)$ True, if G is k-colorable False, if G is not k-colorable

 $PCSP(K_k, K_n)$ for $k \le n$ True, if G is k-colorable False, if G is not n-colorable

・ロン ・四と ・ヨン ・ヨン

Polymorphism Clone

Let $\mathbb A$ be a relational structure.

$$\operatorname{Pol}(\mathbb{A}) := igcup_{k\in\mathbb{N}} \operatorname{Hom}(\mathbb{A}^k,\mathbb{A})$$

イロト イ団ト イヨト イヨ

Algebraic Approach to CSPs

Polymorphism Clone

Let \mathbbm{A} be a relational structure.

$$\operatorname{Pol}(\mathbb{A}) := igcup_{k\in\mathbb{N}} \operatorname{Hom}(\mathbb{A}^k,\mathbb{A})$$

Note

Pol(A) is closed under composition and contains all projection maps.
Pol(A) ⊆ Pol(B), then CSP(B) ≤_p CSP(A).

Polymorphism Clone

Let \mathbbm{A} be a relational structure.

$$\operatorname{Pol}(\mathbb{A}) := igcup_{k\in\mathbb{N}} \operatorname{Hom}(\mathbb{A}^k,\mathbb{A})$$

Note

- $Pol(\mathbb{A})$ is closed under composition and contains all projection maps.
- ② $\operatorname{Pol}(\mathbb{A}) \subseteq \operatorname{Pol}(\mathbb{B})$, then $\operatorname{CSP}(\mathbb{B}) \leq_p \operatorname{CSP}(\mathbb{A})$.

Theorem (Bulatov, Zhuk 2017)

Let \mathbb{A} be a finite relational structure with all constant relations. Then $CSP(\mathbb{A})$ is in P if \mathbb{A} has a weak near-unanimity (WNU) polymorphism, and $CSP(\mathbb{A})$ is NP-complete otherwise.

Schaefer's Theorem (1978)

Let \mathbb{A} be a relational structure over a two element domain. If $Pol(\mathbb{A})$ contains one of the following:

- constant unary opertation 0
- constant unary opertation 1
- binary max
- binary min
- ternary majority
- ternary minority

then $\mathrm{CSP}(\mathbb{A})$ is solvable in polynomial time. Otherwise, $\mathrm{CSP}(\mathbb{A})$ is NP-complete.

$PCSP(\mathbb{A}, \mathbb{A}')$ compared to $CSP(\mathbb{A}), CSP(\mathbb{A}')$

イロト イヨト イヨト イヨト

$\mathrm{PCSP}(\mathbb{A},\mathbb{A}')$ compared to $\mathrm{CSP}(\mathbb{A}),\mathrm{CSP}(\mathbb{A}')$

$\mathrm{PCSP}(\mathbb{A},\mathbb{A}') \leq_{\rho} \mathrm{CSP}(\mathbb{A}), \mathrm{CSP}(\mathbb{A}')$

Given an instance Φ of $PCSP(\mathbb{A}, \mathbb{A}')$, then Φ is an instance of $CSP(\mathbb{A})$ and of $CSP(\mathbb{A}')$. Either decides the $PCSP(\mathbb{A}, \mathbb{A}')$.

PCSP vs CSP

$\mathrm{PCSP}(\mathbb{A},\mathbb{A}')$ compared to $\mathrm{CSP}(\mathbb{A}),\mathrm{CSP}(\mathbb{A}')$

$\mathrm{PCSP}(\mathbb{A},\mathbb{A}') \leq_{p} \mathrm{CSP}(\mathbb{A}), \mathrm{CSP}(\mathbb{A}')$

Given an instance Φ of $PCSP(\mathbb{A}, \mathbb{A}')$, then Φ is an instance of $CSP(\mathbb{A})$ and of $CSP(\mathbb{A}')$. Either decides the $PCSP(\mathbb{A}, \mathbb{A}')$.

Sandwich Lemma

Let $\mathbb{A}, \mathbb{A}', \mathbb{B}$ be Γ -structures and $h : \mathbb{A} \to \mathbb{A}'$ a homomorphism such that h factors through \mathbb{B} . Then $\mathrm{PCSP}(\mathbb{A}, \mathbb{A}') \leq_p \mathrm{CSP}(\mathbb{B})$.

PCSP vs CSP

$\mathrm{PCSP}(\mathbb{A},\mathbb{A}')$ compared to $\mathrm{CSP}(\mathbb{A}),\mathrm{CSP}(\mathbb{A}')$

$\mathrm{PCSP}(\mathbb{A},\mathbb{A}') \leq_{p} \mathrm{CSP}(\mathbb{A}), \mathrm{CSP}(\mathbb{A}')$

Given an instance Φ of $PCSP(\mathbb{A}, \mathbb{A}')$, then Φ is an instance of $CSP(\mathbb{A})$ and of $CSP(\mathbb{A}')$. Either decides the $PCSP(\mathbb{A}, \mathbb{A}')$.

Sandwich Lemma

Let $\mathbb{A}, \mathbb{A}', \mathbb{B}$ be Γ -structures and $h : \mathbb{A} \to \mathbb{A}'$ a homomorphism such that h factors through \mathbb{B} . Then $\mathrm{PCSP}(\mathbb{A}, \mathbb{A}') \leq_{p} \mathrm{CSP}(\mathbb{B})$.

Proof.

Let Φ be an instance of $PCSP(\mathbb{A}, \mathbb{A}')$.

- If $\mathbb{A} \models \Phi$, then $\mathbb{B} \models \Phi$.
- If $\mathbb{A}' \not\models \Phi$, then $\mathbb{B} \not\models \Phi$.

Example

Let \mathbb{A} , \mathbb{A}' , \mathbb{B} be Boolean structures with a single 4-ary relation R with the following interpretations:

$$R^{\mathbb{A}} = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\} \quad R^{\mathbb{A}'} = \{0,1\}^4 \setminus \left\{ \begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \right\}$$

 $R^{\mathbb{B}} = \{\overline{x} \in \{0,1\}^4 : |\overline{x}| \text{ is odd}\}.$

Example

Let \mathbb{A} , \mathbb{A}' , \mathbb{B} be Boolean structures with a single 4-ary relation R with the following interpretations:

$$R^{\mathbb{A}} = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\} \quad R^{\mathbb{A}'} = \{0,1\}^4 \setminus \left\{ \begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \right\}$$

 $R^{\mathbb{B}} = \{\overline{x} \in \{0,1\}^4 : |\overline{x}| \text{ is odd}\}.$ Note:

- $\mathrm{CSP}(\mathbb{A}), \mathrm{CSP}(\mathbb{A}')$ are NP-complete
- $CSP(\mathbb{B})$ is in P (has ternary minority polymorphism)

•
$$R^{\mathbb{A}} \subseteq R^{\mathbb{B}} \subseteq R^{\mathbb{A}'}$$
.

Example

Let \mathbb{A} , \mathbb{A}' , \mathbb{B} be Boolean structures with a single 4-ary relation R with the following interpretations:

$$R^{\mathbb{A}} = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\} \quad R^{\mathbb{A}'} = \{0,1\}^4 \setminus \left\{ \begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \right\}$$

 $R^{\mathbb{B}} = \{\overline{x} \in \{0,1\}^4 : |\overline{x}| \text{ is odd}\}.$ Note:

- $\mathrm{CSP}(\mathbb{A}), \mathrm{CSP}(\mathbb{A}')$ are NP-complete
- $CSP(\mathbb{B})$ is in P (has ternary minority polymorphism)

•
$$R^{\mathbb{A}} \subseteq R^{\mathbb{B}} \subseteq R^{\mathbb{A}'}.$$

By the Sandwich Lemma, $PCSP(\mathbb{A}, \mathbb{A}') \leq_p CSP(\mathbb{B}) \in P$.

<ロ> (日) (日) (日) (日) (日)

Polymorphisms

Let \mathbb{A}, \mathbb{A}' be relational structures over the same signature.

$$\operatorname{Pol}(\mathbb{A},\mathbb{A}'):=igcup_{k\in\mathbb{N}}\operatorname{Hom}(\mathbb{A}^k,\mathbb{A}')$$

Polymorphisms

Let \mathbb{A}, \mathbb{A}' be relational structures over the same signature.

$$\operatorname{Pol}(\mathbb{A},\mathbb{A}'):=igcup_{k\in\mathbb{N}}\operatorname{Hom}(\mathbb{A}^k,\mathbb{A}')$$

$\operatorname{Pol}(\mathbb{A},\mathbb{A}')$ is a clonoid

 $\operatorname{Pol}(\mathbb{A}, \mathbb{A}')$ closed under taking minors. For $f : \mathbb{A}^k \to B$ and $\sigma : [k] \to [n]$, $f^{\sigma}(x_1, \ldots, x_n) := f(x_{\sigma(1)}, \ldots, x_{\sigma(k)})$ is a *minor* of f.

Polymorphisms

Let \mathbb{A}, \mathbb{A}' be relational structures over the same signature.

$$\operatorname{Pol}(\mathbb{A},\mathbb{A}'):=igcup_{k\in\mathbb{N}}\operatorname{Hom}(\mathbb{A}^k,\mathbb{A}')$$

$\operatorname{Pol}(\mathbb{A},\mathbb{A}')$ is a clonoid

 $\operatorname{Pol}(\mathbb{A}, \mathbb{A}')$ closed under taking minors. For $f: \mathbb{A}^k \to B$ and $\sigma: [k] \to [n]$, $f^{\sigma}(x_1, \ldots, x_n) := f(x_{\sigma(1)}, \ldots, x_{\sigma(k)})$ is a *minor* of f.

Note

 $\operatorname{Pol}(\mathbb{A},\mathbb{A}')$ is not closed under composition and does not contain projections.

イロト イポト イヨト イヨト

PP-Definability

Let \mathbb{A}, \mathbb{A}' be Γ -structures. A pair $(P, Q) \in \mathcal{P}(\mathbb{A}^n) \times \mathcal{P}((\mathbb{A}')^n)$ is **pp-definable** from $(\mathbb{A}, \mathbb{A}')$ if there exists a pp-formula $\exists \overline{y} \psi(\overline{x}, \overline{y})$ over Γ such that

- if $\overline{a} \in P$, then $\mathbb{A} \models \exists \overline{y} \psi(\overline{a}, \overline{y})$, and
- if $\mathbb{A}' \models \exists \overline{y} \psi(\overline{b}, \overline{y})$, then $\overline{b} \in Q$.

PP-Definability

Let \mathbb{A}, \mathbb{A}' be Γ -structures. A pair $(P, Q) \in \mathcal{P}(\mathbb{A}^n) \times \mathcal{P}((\mathbb{A}')^n)$ is **pp-definable** from $(\mathbb{A}, \mathbb{A}')$ if there exists a pp-formula $\exists \overline{y} \psi(\overline{x}, \overline{y})$ over Γ such that

- if $\overline{a} \in P$, then $\mathbb{A} \models \exists \overline{y} \psi(\overline{a}, \overline{y})$, and
- if $\mathbb{A}' \models \exists \overline{y} \psi(\overline{b}, \overline{y})$, then $\overline{b} \in Q$.

Galois Correspondence

 $(\mathbb{B}, \mathbb{B}')$ is pp-definable from $(\mathbb{A}, \mathbb{A}')$ if and only if $\operatorname{Pol}(\mathbb{A}, \mathbb{A}') \subseteq \operatorname{Pol}(\mathbb{B}, \mathbb{B}'.$

PP-Definability

Let \mathbb{A}, \mathbb{A}' be Γ -structures. A pair $(P, Q) \in \mathcal{P}(\mathbb{A}^n) \times \mathcal{P}((\mathbb{A}')^n)$ is **pp-definable** from $(\mathbb{A}, \mathbb{A}')$ if there exists a pp-formula $\exists \overline{y} \psi(\overline{x}, \overline{y})$ over Γ such that

- if $\overline{a} \in P$, then $\mathbb{A} \models \exists \overline{y} \psi(\overline{a}, \overline{y})$, and
- if $\mathbb{A}' \models \exists \overline{y} \psi(\overline{b}, \overline{y})$, then $\overline{b} \in Q$.

Galois Correspondence

 $(\mathbb{B}, \mathbb{B}')$ is pp-definable from $(\mathbb{A}, \mathbb{A}')$ if and only if $\operatorname{Pol}(\mathbb{A}, \mathbb{A}') \subseteq \operatorname{Pol}(\mathbb{B}, \mathbb{B}'.$

Theorem (Brakensiek, Guruswami, 2017) If $\operatorname{Pol}(\mathbb{A}, \mathbb{A}') \subseteq \operatorname{Pol}(\mathbb{B}, \mathbb{B}')$, then $\operatorname{PCSP}(\mathbb{B}, \mathbb{B}') \leq_{p} \operatorname{PCSP}(\mathbb{A}, \mathbb{A}')$.

/□ ▶ 《 ⋽ ▶ 《 ⋽

Let Γ be a finite relational language, \mathbb{A}, \mathbb{A}' be Boolean Γ -structures, and $h : \mathbb{A} \to \mathbb{A}'$ a homomorphism.

Let Γ be a finite relational language, \mathbb{A}, \mathbb{A}' be Boolean Γ -structures, and $h : \mathbb{A} \to \mathbb{A}'$ a homomorphism.

Important Functions

• $\operatorname{ZerO}_k(x) = 0$ • $\operatorname{ONE}_k(x) = 1$ • $\operatorname{AND}_k(x) = \bigwedge_{i=1}^k x_i$ • $\operatorname{OR}_k(x) = \bigvee_{i=1}^k x_i$ • $\operatorname{ARD}_k(x) = \begin{cases} 1 & \sum_{i=1}^k x_i > k/2 \\ 0 & \text{otherwise} \end{cases}$ • $\operatorname{AR}_k(x) = \begin{cases} 1 & \sum_{i=1}^k (-1)^{i-1} x_i > 0 \\ 0 & \text{otherwise} \end{cases}$

イロト 不得下 イヨト イヨト 二日

Lemma

If $Pol(\mathbb{A}, \mathbb{A}')$ satisfies any one of the following:

• contains ZerO_k , ONE_k , AND_k , OR_k , $\overline{\operatorname{ZerO}}_k$, $\overline{\operatorname{ONE}}_k$, $\overline{\operatorname{AND}}_k$, or $\overline{\operatorname{OR}}_k$ for all k

2 contains PAR_k , MAJ_k , AT_k , $\overline{\operatorname{PAR}}_k$, $\overline{\operatorname{MAJ}}_k$, or $\overline{\operatorname{AT}}_k$ for all k odd then $\operatorname{PCSP}(\mathbb{A}, \mathbb{A}')$ is in P.

Definitions

A function $f: \{0,1\}^k \to \{0,1\}$ is **folded** if $f(\neg x) = \neg f(x)$ for all $x \in \{0,1\}^k$.

A *k*-ary relation *R* is **symmetric** if for all $x \in R$ and permutations $\sigma : [k] \to [k]$, we have $(x_{\sigma(a)}, \ldots, x_{\sigma(k)})$.

Definitions

A function $f: \{0,1\}^k \to \{0,1\}$ is **folded** if $f(\neg x) = \neg f(x)$ for all $x \in \{0,1\}^k$.

A *k*-ary relation *R* is **symmetric** if for all $x \in R$ and permutations $\sigma : [k] \to [k]$, we have $(x_{\sigma(a)}, \ldots, x_{\sigma(k)})$.

Theorem

If \mathbb{A}, \mathbb{A}' are symmetric and $\operatorname{Pol}(\mathbb{A}, \mathbb{A}')$ is folded, then if at least one of Par_k , Maj_k , AT_k , $\overline{\operatorname{Par}}_k$, $\overline{\operatorname{Maj}}_k$, or $\overline{\operatorname{AT}}_k$ is in $\operatorname{Pol}(\mathbb{A}, \mathbb{A})$ for all k odd, then $\operatorname{PCSP}(\mathbb{A}, \mathbb{A}')$ is in P. Otherwise, it is NP-hard.

Proof Idea

For hardness use reduction from GapLabelCover.

Clonoids

More on Clonoids

More on Clonoids

Clonoid homomorphisms (cf. Barto, Opršal, Pinsker, 2017)

Let $\mathcal A$ and $\mathcal B$ be clonoids. A clonoid homomorphism $\varphi:\mathcal A\to\mathcal B$ is a mapping that

- preserves arities
- ② commutes with minors, that is $\varphi(f^{\sigma}) = (\varphi(f))^{\sigma}$ for any $f \in \mathcal{A}$ and $\sigma : [k] \to [n]$ where k is the arity of f and $n \in \mathbb{N}$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Clonoids

More on Clonoids

Clonoid homomorphisms (cf. Barto, Opršal, Pinsker, 2017)

Let $\mathcal A$ and $\mathcal B$ be clonoids. A clonoid homomorphism $\varphi:\mathcal A\to\mathcal B$ is a mapping that

preserves arities

② commutes with minors, that is $\varphi(f^{\sigma}) = (\varphi(f))^{\sigma}$ for any $f \in \mathcal{A}$ and $\sigma : [k] \to [n]$ where k is the arity of f and $n \in \mathbb{N}$.

Note

(2) is equivalent to preserving identities of height 1, i.e.

$$\varphi(f(\pi_{i_1}^n,\ldots,\pi_{i_k}^n))=\varphi(f)(\pi_{i_1}^n,\ldots,\pi_{i_k}^n)$$

for all $k, n \ge 1$, all $i_1, \ldots, i_k \in [n]$, and any k-ary operation $f \in A$.

イロト イヨト イヨト

Let \mathcal{A} be a clonoid with domain \mathcal{A} and codomain \mathcal{A}' .

Reflections of \mathcal{A} , $R(\mathcal{A})$

All clonoids \mathcal{B} obtained as follows:

Given $h_1: B \to A$, $h_2: A' \to B'$, and $f \in \mathcal{A}$, say k-ary

過 ト イ ヨ ト イ ヨ ト

Let \mathcal{A} be a clonoid with domain \mathcal{A} and codomain \mathcal{A}' .

Reflections of \mathcal{A} , $R(\mathcal{A})$

All clonoids \mathcal{B} obtained as follows:

Given $h_1: B \to A$, $h_2: A' \to B'$, and $f \in A$, say k-ary

Powers of \mathcal{A} , $\mathsf{P}(\mathcal{A})$

All clonoids $\mathcal{A}^n := \{f^n : (\mathcal{A}^n)^k \to \mathcal{A}^n \mid f \in \mathcal{A}, f \text{ } k\text{-ary}\}.$

- 4 回 ト 4 三 ト 4 三 ト つ 0 0

Let \mathcal{A} be a clonoid with domain \mathcal{A} and codomain \mathcal{A}' .

Reflections of \mathcal{A} , $R(\mathcal{A})$

All clonoids \mathcal{B} obtained as follows:

Given $h_1: B \rightarrow A$, $h_2: A' \rightarrow B'$, and $f \in A$, say k-ary

Powers of \mathcal{A} , $\mathsf{P}(\mathcal{A})$

All clonoids $\mathcal{A}^n := \{f^n : (\mathcal{A}^n)^k \to \mathcal{A}^n \mid f \in \mathcal{A}, f \text{ } k\text{-ary}\}.$

Extensions of \mathcal{A} , $E(\mathcal{A})$

All clonoids $\mathcal{B} \supseteq \mathcal{A}$.

Clonoids

Tying it all together

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Tying it all together

Theorem

Let \mathbb{A}, \mathbb{A}' be Γ -structures, \mathbb{B}, \mathbb{B}' be Δ -structures, and $\mathcal{A} = \operatorname{Pol}(\mathbb{A}, \mathbb{A}')$ and $\mathcal{B} = \operatorname{Pol}(\mathbb{B}, \mathbb{B}')$. Then $\mathcal{B} \in \operatorname{ERP}(\mathcal{A})$ if and only if there exists a clonoid homomorphism $\mathcal{A} \to \mathcal{B}$.

Tying it all together

Theorem

Let \mathbb{A}, \mathbb{A}' be Γ -structures, \mathbb{B}, \mathbb{B}' be Δ -structures, and $\mathcal{A} = \operatorname{Pol}(\mathbb{A}, \mathbb{A}')$ and $\mathcal{B} = \operatorname{Pol}(\mathbb{B}, \mathbb{B}')$. Then $\mathcal{B} \in \operatorname{ERP}(\mathcal{A})$ if and only if there exists a clonoid homomorphism $\mathcal{A} \to \mathcal{B}$.

Corollary

If either of the above hold, then $\mathrm{PCSP}(\mathbb{B},\mathbb{B}') \leq_p \mathrm{PCSP}(\mathbb{A},\mathbb{A}')$.

• Classify complexity of PCSP on Boolean structures.

< ロト < 同ト < ヨト < ヨ

- $\bullet\,$ Classify complexity of PCSP on Boolean structures.
- What are the clonoids on $\{0,1\}$?

- ∢ ∃ ▶

- Classify complexity of PCSP on Boolean structures.
- What are the clonoids on $\{0,1\}$?
- Is there a more general concept than clonoid homomorphisms that gives polytime reductions between PCSPs?