Higher Dimensional Congruences

Andrew Moorhead

Vanderbilt University

May 19, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

1. Motivation from Commutator Theory

- 1. Motivation from Commutator Theory
- 2. Higher Dimensional Congruence Relations

(ロ)、(型)、(E)、(E)、 E) の(の)

- 1. Motivation from Commutator Theory
- 2. Higher Dimensional Congruence Relations
- 3. A Stronger Term Condition and Commutator

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. Motivation from Commutator Theory
- 2. Higher Dimensional Congruence Relations
- 3. A Stronger Term Condition and Commutator

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

4. Supernilpotence

- 1. Motivation from Commutator Theory
- 2. Higher Dimensional Congruence Relations
- 3. A Stronger Term Condition and Commutator

- 4. Supernilpotence
- 5. Questions and Observations

- 1. Motivation from Commutator Theory
- 2. Higher Dimensional Congruence Relations
- 3. A Stronger Term Condition and Commutator

- 4. Supernilpotence
- 5. Questions and Observations

The modular commutator can be equivalently defined with either

The modular commutator can be equivalently defined with either

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. the term condition, or

The modular commutator can be equivalently defined with either

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. the term condition, or
- 2. properties of a relation, usually called Δ .

- The modular commutator can be equivalently defined with either
 - 1. the term condition, or
 - 2. properties of a relation, usually called Δ .

Definition (Term Condition)

Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \text{Con}(\mathbb{A})$. We say that α **centralizes** β **modulo** δ when the following condition is met:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The modular commutator can be equivalently defined with either
 - 1. the term condition, or
 - 2. properties of a relation, usually called Δ .

Definition (Term Condition)

Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \text{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

► For all
$$t \in Pol(\mathbb{A})$$
 and $\mathbf{a}_0 \equiv_{\alpha} \mathbf{b}_0$ and $\mathbf{a}_1 \equiv_{\beta} \mathbf{b}_1$ with $|\mathbf{a}_0| + |\mathbf{a}_1| = \sigma(t)$,

$$\left(t(\mathbf{a}_0,\mathbf{a}_1)\equiv_{\delta} t(\mathbf{a}_0,\mathbf{b}_1)\implies t(\mathbf{b}_0,\mathbf{a}_0)\equiv_{\delta} t(\mathbf{b}_0,\mathbf{b}_1)\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The modular commutator can be equivalently defined with either
 - 1. the term condition, or
 - 2. properties of a relation, usually called Δ .

Definition (Term Condition)

Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \text{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

► For all
$$t \in Pol(\mathbb{A})$$
 and $\mathbf{a}_0 \equiv_{\alpha} \mathbf{b}_0$ and $\mathbf{a}_1 \equiv_{\beta} \mathbf{b}_1$ with $|\mathbf{a}_0| + |\mathbf{a}_1| = \sigma(t)$,

$$\left(t(\mathbf{a}_0,\mathbf{a}_1)\equiv_{\delta} t(\mathbf{a}_0,\mathbf{b}_1)\implies t(\mathbf{b}_0,\mathbf{a}_0)\equiv_{\delta} t(\mathbf{b}_0,\mathbf{b}_1)\right)$$

We write $C_{TC}(\alpha, \beta; \delta)$ whenever this is true.

- The modular commutator can be equivalently defined with either
 - 1. the term condition, or
 - 2. properties of a relation, usually called Δ .

Definition (Term Condition)

Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \text{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

► For all
$$t \in Pol(\mathbb{A})$$
 and $\mathbf{a}_0 \equiv_{\alpha} \mathbf{b}_0$ and $\mathbf{a}_1 \equiv_{\beta} \mathbf{b}_1$ with $|\mathbf{a}_0| + |\mathbf{a}_1| = \sigma(t)$,

$$\left(t(\mathbf{a}_0,\mathbf{a}_1)\equiv_{\delta} t(\mathbf{a}_0,\mathbf{b}_1)\implies t(\mathbf{b}_0,\mathbf{a}_0)\equiv_{\delta} t(\mathbf{b}_0,\mathbf{b}_1)\right)$$

We write $C_{TC}(\alpha, \beta; \delta)$ whenever this is true.

The term condition may be described as a condition that is quantified over a certain invariant relation of A which is called the algebra of (α, β)-matrices and is denoted M(α,β).

A square is the graph (2²; E), where two functions f, g ∈ 2² are connected by an edge if and only if their outputs differ in exactly one argument.

A square is the graph (2²; E), where two functions f, g ∈ 2² are connected by an edge if and only if their outputs differ in exactly one argument.

We say that a relation R on a set A is 2-dimensional if R ⊆ A^{2²} (R is a set of squares whos vertices are labeled by elements of A.)

A square is the graph (2²; E), where two functions f, g ∈ 2² are connected by an edge if and only if their outputs differ in exactly one argument.

- We say that a relation R on a set A is 2-dimensional if R ⊆ A^{2²} (R is a set of squares whos vertices are labeled by elements of A.)
- $M(\alpha, \beta)$ is the subalgebra of \mathbb{A}^{2^2} with generators

$$\left\{ \left[\begin{array}{cc} x & y \\ x & y \end{array} \right] : x \equiv_{\alpha} y \right\} \bigcup \left\{ \left[\begin{array}{cc} y & y \\ x & x \end{array} \right] : x \equiv_{\beta} y \right\}$$

・ロト・雪ト・ヨト・ヨー うへぐ

For $\delta \in Con(\mathbb{A})$ we have that α centralizes β modulo δ if the implication

holds for all (α, β) -matrices. This condition is abbreviated $C_{TC}(\alpha, \beta; \delta)$.

Similarly, we have that $\ \beta$ centralizes α modulo δ if the implication

holds for all (α, β) -matrices. This condition is abbreviated $C_{TC}(\beta, \alpha; \delta)$.

The binary commutator is defined to be

$$[\alpha,\beta]_{TC} = \bigwedge \{\delta : C(\alpha,\beta;\delta)\}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

The notions of matrices and centrality for three congruences are defined similarly.

- The notions of matrices and centrality for three congruences are defined similarly.
- ► A cube is the graph (2³; E), where two functions f, g ∈ 2³ are connected by an edge if and only if their outputs differ in exactly one argument.

- The notions of matrices and centrality for three congruences are defined similarly.
- ► A cube is the graph (2³; E), where two functions f, g ∈ 2³ are connected by an edge if and only if their outputs differ in exactly one argument.

We say that a relation R on a set A is 3-dimensional if R ⊆ A^{3²} (R is a set of cubes whos vertices are labeled by elements of A.)

- The notions of matrices and centrality for three congruences are defined similarly.
- ► A cube is the graph (2³; E), where two functions f, g ∈ 2³ are connected by an edge if and only if their outputs differ in exactly one argument.

We say that a relation R on a set A is 3-dimensional if R ⊆ A^{3²} (R is a set of cubes whos vertices are labeled by elements of A.)

For congruences θ₀, θ₁, θ₂ ∈ Con(A), set M(θ₀, θ₁, θ₂) ≤ A^{2³} to be the subalgebra generated by the following labeled cubes:

 $M(\theta_0, \theta_1, \theta_2)$ is called the algebra of $(\theta_0, \theta_1, \theta_2)$ -matrices.

イロト 不得下 イヨト イヨト

For δ ∈ Con(A), we say that θ₀, θ₁ centralize θ₂ modulo δ if the following implication holds for all (θ₀, θ₁, θ₂)-matrices:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ For $\delta \in \text{Con}(\mathbb{A})$, we say that θ_0, θ_1 centralize θ_2 modulo δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$ -matrices:

イロト イポト イヨト イヨト

э

▶ For $\delta \in \text{Con}(\mathbb{A})$, we say that θ_0, θ_1 centralize θ_2 modulo δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$ -matrices:

イロト イポト イヨト イヨト

э

▶ For $\delta \in \text{Con}(\mathbb{A})$, we say that θ_0, θ_1 centralize θ_2 modulo δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$ -matrices:

(日) (同) (日) (日)

э

For δ ∈ Con(A), we say that θ₀, θ₁ centralize θ₂ modulo δ if the following implication holds for all (θ₀, θ₁, θ₂)-matrices:

(日)、

э

• This condition is abbreviated $C_{TC}(\theta_0, \theta_1, \theta_2; \delta)$.

• Here is a picture of $C_{TC}(\theta_1, \theta_2, \theta_0; \delta)$:

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

• For congruences $\theta_0, \theta_1, \theta_2$ we set

$$[\theta_0, \theta_1, \theta_2]_{TC} = \bigwedge \{ \delta : C_{TC}(\theta_0, \theta_1, \theta_2; \delta) \}$$

▶ For congruences $\theta_0, \theta_1, \theta_2$ we set

$$[\theta_0, \theta_1, \theta_2]_{TC} = \bigwedge \{ \delta : C_{TC}(\theta_0, \theta_1, \theta_2; \delta) \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► Higher centrality and the commutator for arity ≥ 4 are similarly defined.

An *n*-dimensional hypercube is the graph 𝔅_n = ⟨2ⁿ; 𝔅⟩, where two functions f, g ∈ 2^k are connected by an edge if and only if their outputs differ in exactly one argument.

An *n*-dimensional hypercube is the graph 𝔅_n = ⟨2ⁿ; 𝔅⟩, where two functions f, g ∈ 2^k are connected by an edge if and only if their outputs differ in exactly one argument.

We say that a relation R on a set A is n-dimensional if R ⊆ A^{2ⁿ}

- An *n*-dimensional hypercube is the graph 𝔅_n = ⟨2ⁿ; 𝔅⟩, where two functions f, g ∈ 2^k are connected by an edge if and only if their outputs differ in exactly one argument.
- We say that a relation R on a set A is n-dimensional if R ⊆ A^{2ⁿ}
- ► Observation: The term condition definition of centrality involving k-many congruences θ₀,...,θ_{k-1} is a condition that is quantified over (θ₀,...,θ_{n-1})-matrices, which are certain n-dimensional invariant relations

$$M(\theta_0,\ldots,\theta_{k-1}) \leq \mathbb{A}^{2^n}$$

that have generators of the form

1.
$$(\mathbb{H}_n)_i^0 = \langle \{f \in 2^k : f(i) = 0\}; E \rangle$$
 and

1.
$$(\mathbb{H}_n)_i^0 = \langle \{f \in 2^k : f(i) = 0\}; E \rangle$$
 and

2.
$$(\mathbb{H}_n)_i^1 = \langle \{f \in 2^k : f(i) = 1\}; E \rangle.$$

1.
$$(\mathbb{H}_n)_i^0 = \langle \{f \in 2^k : f(i) = 0\}; E \rangle$$
 and

2.
$$(\mathbb{H}_n)_i^1 = \langle \{f \in 2^{\kappa} : f(i) = 1\}; E \rangle.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

1.
$$(\mathbb{H}_n)_i^0 = \langle \{f \in 2^k : f(i) = 0\}; E \rangle$$
 and

2.
$$(\mathbb{H}_n)_i^1 = \langle \{ f \in 2^{\kappa} : f(i) = 1 \}; E \rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

1.
$$(\mathbb{H}_n)_i^0 = \langle \{f \in 2^k : f(i) = 0\}; E \rangle$$
 and

2.
$$(\mathbb{H}_n)_i^1 = \langle \{f \in 2^{\kappa} : f(i) = 1\}; E \rangle.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

・ロト・日本・モート モー うへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$h_i^0$$
 and

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$h_i^0$$
 and
2. h_i^1 .

1.
$$h_i^0$$
 and
2. h_i^1 .

1.
$$h_i^0$$
 and
2. h_i^1 .

1.
$$h_i^0$$
 and
2. h_i^1 .

For
$$R \subseteq A^{2^n}$$
, set

$$R_i = \{ \langle h_i^0, h_i^1 \rangle : h \in R \}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

▶ For
$$R \subseteq A^{2^n}$$
, set

$$R_i = \{ \langle h_i^0, h_i^1 \rangle : h \in R \}.$$

Fact: Suppose A is a member of a permutable variety, and take (θ₀,...,θ_{k-1}) ∈ Con(A)ⁿ. Then,

$$M(\theta_0,\ldots,\theta_{k-1})_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a congruence relation, for all $i \in n$.

▶ For
$$R \subseteq A^{2^n}$$
, set

$$R_i = \{ \langle h_i^0, h_i^1 \rangle : h \in R \}.$$

Fact: Suppose A is a member of a permutable variety, and take (θ₀,...,θ_{k-1}) ∈ Con(A)ⁿ. Then,

$$M(\theta_0,\ldots,\theta_{k-1})_i$$

is a congruence relation, for all $i \in n$.

 This leads to a nice characterization of the commutator for permutable varieties, e.g.,

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1. $\langle x, y \rangle \in [\alpha, \beta]_{TC}$

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{TC}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in M(\alpha, \beta)$

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{TC}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in M(\alpha, \beta)$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in M(\alpha, \beta)$ for some $a \in A$

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{TC}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in M(\alpha, \beta)$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in M(\alpha, \beta)$ for some $a \in A$
4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in M(\alpha, \beta)$ for some $b \in A$.

Let V be a modular variety and let A ∈ V. For α, β ∈ Con(A), define Δ_{α,β} to be the transitive closure of M(α, β)₀.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let V be a modular variety and let A ∈ V. For α, β ∈ Con(A), define Δ_{α,β} to be the transitive closure of M(α, β)₀.

Let V be a modular variety and let A ∈ V. For α, β ∈ Con(A), define Δ_{α,β} to be the transitive closure of M(α, β)₀.

• **Fact:** Both $(\Delta_{\alpha,\beta})_0$ and $(\Delta_{\alpha,\beta})_1$ are congruence relations.

Let \mathcal{V} be a modular variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{TC}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in \Delta_{\alpha, \beta}$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $a \in A$
4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $b \in A$.

Theorem: Let \mathcal{V} be a permutable variety. Take $\theta_0, \theta_1, \theta_2 \in \text{Con}(\mathbb{A})$ for $\mathbb{A} \in \mathcal{V}$. The following are equivalent:

(1)
$$\langle x, y \rangle \in [\theta_0, \theta_1, \theta_2]$$

(2) $x \xrightarrow{x} y \in M(\theta_0, \theta_1, \theta_2)$

 \overline{x} There exist elements of \mathbb{A} such that

x

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem: Let \mathcal{V} be a modular variety. Take $\theta_0, \theta_1, \theta_2 \in \text{Con}(\mathbb{A})$ for $\mathbb{A} \in \mathcal{V}$. The following are equivalent:

(1)
$$\langle x, y \rangle \in [\theta_0, \theta_1, \theta_2]$$

There exist elements of \mathbb{A} such that

Definition

Let $R \subseteq A^{2^n}$ be an *n*-dimensional relation on some set A. R is called an *n*-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

Definition

Let $R \subseteq A^{2^n}$ be an *n*-dimensional relation on some set A. R is called an *n*-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

Definition

Let \mathbb{A} be an algebra with underlying set A. Let $R \in A^{2^n}$ be an *n*-dimensional equivalence relation. R is called an *n*-dimensional congruence if R is preserved by the basic operations of \mathbb{A} .

Definition

Let $R \subseteq A^{2^n}$ be an *n*-dimensional relation on some set A. R is called an *n*-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

Definition

Let \mathbb{A} be an algebra with underlying set A. Let $R \in A^{2^n}$ be an *n*-dimensional equivalence relation. R is called an *n*-dimensional congruence if R is preserved by the basic operations of \mathbb{A} .

Fix n ≥ 1. The collection of all n-dimensional congruences of an algebra A is an algebraic lattice, which we denote by Con_n(A).

Definition

Let $R \subseteq A^{2^n}$ be an *n*-dimensional relation on some set A. R is called an *n*-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

Definition

Let \mathbb{A} be an algebra with underlying set A. Let $R \in A^{2^n}$ be an *n*-dimensional equivalence relation. R is called an *n*-dimensional congruence if R is preserved by the basic operations of \mathbb{A} .

- Fix n ≥ 1. The collection of all n-dimensional congruences of an algebra A is an algebraic lattice, which we denote by Con_n(A).
- There are *n* distinct embeddings from $Con_1(\mathbb{A})$ into $Con_n(\mathbb{A})$.

・ロト ・日・・日・・日・・日・

Fix a dimension n and take i ∈ n. For a pair (x, y) ∈ A², let Cube_i((x, y)) ∈ A^{2ⁿ} be such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Higher Dimensional Congruence Relations

- Fix a dimension n and take i ∈ n. For a pair (x, y) ∈ A², let Cube_i((x, y)) ∈ A^{2ⁿ} be such that
 - 1. $(\operatorname{Cube}_i(\langle x, y \rangle))_i^0$ is the (n-1)-dimensional cube with each vertex labeled by x.

Higher Dimensional Congruence Relations

- Fix a dimension n and take i ∈ n. For a pair (x, y) ∈ A², let Cube_i((x, y)) ∈ A^{2ⁿ} be such that
 - 1. $(\operatorname{Cube}_i(\langle x, y \rangle))_i^0$ is the (n-1)-dimensional cube with each vertex labeled by x.

Higher Dimensional Congruence Relations

- Fix a dimension n and take i ∈ n. For a pair (x, y) ∈ A², let Cube_i((x, y)) ∈ A^{2ⁿ} be such that
 - 1. $(\operatorname{Cube}_i(\langle x, y \rangle))_i^0$ is the (n-1)-dimensional cube with each vertex labeled by x.
 - 2. $(\operatorname{Cube}_i(\langle x, y \rangle))_i^1$ is the (n-1)-dimensional cube with each vertex labeled by y.
- Define $\phi_n^i : \operatorname{Con}_1(\mathbb{A}) \to \operatorname{Con}_n(\mathbb{A})$ by

$$\phi_n^i(\alpha) = \{\mathsf{Cube}_i(\langle x, y \rangle) : \langle x, y \rangle \in \alpha\}$$

 Let A be an algebra and let θ be an equivalence relation on A. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of A.

・ロト・日本・モート モー うへぐ

- Let A be an algebra and let θ be an equivalence relation on A. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of A.
- This generalizes to:

Theorem

Let \mathbb{A} be an algebra and let $n \ge 1$. An n-dimensional equivalence relation θ is admissible if and only if θ is compatible with the n-ary polynomials of \mathbb{A} .

- Let A be an algebra and let θ be an equivalence relation on A. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of A.
- This generalizes to:

Theorem

Let \mathbb{A} be an algebra and let $n \ge 1$. An n-dimensional equivalence relation θ is admissible if and only if θ is compatible with the n-ary polynomials of \mathbb{A} .

• $\Delta_{\theta_0,...,\theta_{n-1}} = \bigvee_i \phi_n^i(\theta_i)$ is therefore obtained by 1. Closing $\bigcup \phi_n^i(\theta_i)$ under all *n*-ary polynomials and then

- Let A be an algebra and let θ be an equivalence relation on A. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of A.
- This generalizes to:

Theorem

Let \mathbb{A} be an algebra and let $n \ge 1$. An n-dimensional equivalence relation θ is admissible if and only if θ is compatible with the n-ary polynomials of \mathbb{A} .

- $\Delta_{\theta_0,...,\theta_{n-1}} = \bigvee_i \phi_n^i(\theta_i)$ is therefore obtained by
 - 1. Closing $\bigcup \phi_n^i(\theta_i)$ under all *n*-ary polynomials and then
 - 2. taking a sequence of transitive closures, cycling through all possible directions possibly ω -many times.
- Notice: M(θ₀,...,θ_{n-1}) ≤ Δ_{θ₀,...,θ_{n-1}}. We use this larger set to define a stronger term condition.

Hypercentrality

For $\delta \in Con(\mathbb{A})$ we have that α hypercentralizes β modulo δ if the implication

holds for all members of $\Delta_{\alpha,\beta}$. This condition is abbreviated $C_H(\alpha,\beta;\delta)$.

Hypercentrality

Similarly, we have that $~\beta~{\rm hypercentralizes}~\alpha~{\rm modulo}~\delta~$ if the implication

holds for all members of $\Delta_{\alpha,\beta}$. This condition is abbreviated $C_H(\beta,\alpha;\delta)$.

Hypercentrality

• For congruences θ_0, θ_1 we set

$$[\theta_0,\theta_1]_H = \bigwedge \{\delta : C_H(\theta_0,\theta_1;\delta)\}$$

• For congruences θ_0, θ_1 we set

$$[\theta_0,\theta_1]_H = \bigwedge \{\delta : C_H(\theta_0,\theta_1;\delta)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Higher arity hypercentrality and the higher arity hypercommutator similarly defined.

Theorem (Binary Hyper Commutator)

Let \mathbb{A} be an algebra. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{H}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in \Delta_{\alpha, \beta}$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $a \in A$
4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $b \in A$.

Theorem (Binary Hyper Commutator)

Let \mathbb{A} be an algebra. For $\alpha, \beta \in Con(\mathbb{A})$, the following are equivalent:

1.
$$\langle x, y \rangle \in [\alpha, \beta]_{H}$$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in \Delta_{\alpha, \beta}$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $a \in A$
4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $b \in A$.

 A similar characterization of the higher arity hyper commutator also holds.

Definition

Let \mathbb{A} be an algebra and let $\theta \in \text{Con}(\mathbb{A})$. Set $(\theta]^0 = \theta$ and $(\theta]^{i+1} = [(\theta]_i, \theta]_{\mathcal{TC}}$.

Definition

Let \mathbb{A} be an algebra and let $\theta \in \text{Con}(\mathbb{A})$. Set $(\theta]^0 = \theta$ and $(\theta]^{i+1} = [(\theta]_i, \theta]_{\mathcal{TC}}$.

1. If θ is such that $(\theta]^n = 0$, then θ is said to be *n*-step nilpotent.

Definition

Let \mathbb{A} be an algebra and let $\theta \in \text{Con}(\mathbb{A})$. Set $(\theta]^0 = \theta$ and $(\theta]^{i+1} = [(\theta]_i, \theta]_{\mathcal{TC}}$.

- 1. If θ is such that $(\theta]^n = 0$, then θ is said to be *n*-step nilpotent.
- 2. If θ is such that $\underbrace{[\theta, \dots, \theta]}_{n+1} = 0$, then θ is said to be *n*-step supernilpotent.

Definition

Let \mathbb{A} be an algebra and let $\theta \in \text{Con}(\mathbb{A})$. Set $(\theta]^0 = \theta$ and $(\theta]^{i+1} = [(\theta]_i, \theta]_{\mathcal{TC}}$.

- 1. If θ is such that $(\theta]^n = 0$, then θ is said to be *n*-step nilpotent.
- 2. If θ is such that $\underbrace{[\theta, \dots, \theta]}_{n+1} = 0$, then θ is said to be *n*-step supernilpotent

supernilpotent.

 For permutable varieties, Aichinger and Mudrinski showed that supernilpotence implies nilpotence.

Definition

Let \mathbb{A} be an algebra and let $\theta \in \text{Con}(\mathbb{A})$. Set $(\theta]^0 = \theta$ and $(\theta]^{i+1} = [(\theta]_i, \theta]_{\mathcal{TC}}$.

- 1. If θ is such that $(\theta]^n = 0$, then θ is said to be *n*-step nilpotent.
- 2. If θ is such that $\underbrace{[\theta, \dots, \theta]}_{n+1} = 0$, then θ is said to be *n*-step supernilpotent

supernilpotent.

- For permutable varieties, Aichinger and Mudrinski showed that supernilpotence implies nilpotence.
- This is probably true for modular variates (only written up for the ternary case.)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Strategy:

Strategy:

1. Define the symmetric commutator: Define $C_{S}(\theta_{0}, \ldots, \theta_{n-1}; \delta) = \bigwedge_{\sigma \in S_{n}} C_{TC}(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)}).$

- Strategy:
 - 1. Define the symmetric commutator: Define $C_{S}(\theta_{0}, \ldots, \theta_{n-1}; \delta) = \bigwedge_{\sigma \in S_{n}} C_{TC}(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)})$. Now define

$$[\theta_0,\ldots,\theta_{n-1}]_{\mathcal{S}}=\bigwedge\{\delta:C_{\mathcal{S}}(\theta_0,\ldots,\theta_{n-1};\delta)\}$$

- Strategy:
 - 1. Define the symmetric commutator: Define $C_{S}(\theta_{0}, \ldots, \theta_{n-1}; \delta) = \bigwedge_{\sigma \in S_{n}} C_{TC}(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)})$. Now define

$$[\theta_0,\ldots,\theta_{n-1}]_{\mathcal{S}}=\bigwedge\{\delta:C_{\mathcal{S}}(\theta_0,\ldots,\theta_{n-1};\delta)\}$$

2. From the definitions, it follows that

$$[\theta_0,\ldots,\theta_{n-1}]_{\mathcal{TC}} \leq [\theta_0,\ldots,\theta_{n-1}]_{\mathcal{S}} \leq [\theta_0,\ldots,\theta_{n-1}]_{\mathcal{H}}$$

- Strategy:
 - 1. Define the symmetric commutator: Define $C_{S}(\theta_{0}, \ldots, \theta_{n-1}; \delta) = \bigwedge_{\sigma \in S_{n}} C_{TC}(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)})$. Now define

$$[\theta_0,\ldots,\theta_{n-1}]_{\mathcal{S}}=\bigwedge\{\delta:C_{\mathcal{S}}(\theta_0,\ldots,\theta_{n-1};\delta)\}$$

2. From the definitions, it follows that

$$[\theta_0,\ldots,\theta_{n-1}]_{TC} \leq [\theta_0,\ldots,\theta_{n-1}]_S \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

3. Demonstrate the **commutator nesting property** for the hyper commutator:

$$[[\theta_0,\ldots,\theta_{i-1}]_H,\theta_i,\ldots,\theta_{n-1}]_H \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

- Strategy:
 - 1. Define the symmetric commutator: Define $C_{S}(\theta_{0}, \ldots, \theta_{n-1}; \delta) = \bigwedge_{\sigma \in S_{n}} C_{TC}(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)})$. Now define

$$[\theta_0,\ldots,\theta_{n-1}]_{\mathcal{S}}=\bigwedge\{\delta:C_{\mathcal{S}}(\theta_0,\ldots,\theta_{n-1};\delta)\}$$

2. From the definitions, it follows that

$$[\theta_0,\ldots,\theta_{n-1}]_{\mathcal{TC}} \leq [\theta_0,\ldots,\theta_{n-1}]_{\mathcal{S}} \leq [\theta_0,\ldots,\theta_{n-1}]_{\mathcal{H}}$$

3. Demonstrate the **commutator nesting property** for the hyper commutator:

$$[[\theta_0,\ldots,\theta_{i-1}]_H,\theta_i,\ldots,\theta_{n-1}]_H \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

4. Show that $[\theta_0, \ldots, \theta_{n-1}]_S = [\theta_0, \ldots, \theta_{n-1}]_H$ in a Taylor variety.

- Strategy:
 - 1. Define the symmetric commutator: Define $C_{S}(\theta_{0}, \ldots, \theta_{n-1}; \delta) = \bigwedge_{\sigma \in S_{n}} C_{TC}(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)})$. Now define

$$[\theta_0,\ldots,\theta_{n-1}]_{\mathcal{S}}=\bigwedge\{\delta:C_{\mathcal{S}}(\theta_0,\ldots,\theta_{n-1};\delta)\}$$

2. From the definitions, it follows that

$$[\theta_0,\ldots,\theta_{n-1}]_{TC} \leq [\theta_0,\ldots,\theta_{n-1}]_{S} \leq [\theta_0,\ldots,\theta_{n-1}]_{H}$$

3. Demonstrate the **commutator nesting property** for the hyper commutator:

$$[[\theta_0,\ldots,\theta_{i-1}]_H,\theta_i,\ldots,\theta_{n-1}]_H \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

4. Show that $[\theta_0, \ldots, \theta_{n-1}]_S = [\theta_0, \ldots, \theta_{n-1}]_H$ in a Taylor variety. 5. If all of the arguments are equal to θ , then

$$\begin{split} [[\theta, \dots, \theta]_{\mathcal{T}C}, \theta, \dots, \theta]_{\mathcal{T}C} &= [[\theta, \dots, \theta]_H, \theta, \dots, \theta]_H \\ &\leq [\theta, \dots, \theta]_H = [\theta, \dots, \theta]_{\mathcal{T}C} \end{split}$$

- Strategy:
 - 1. Define the symmetric commutator: Define $C_{S}(\theta_{0}, \ldots, \theta_{n-1}; \delta) = \bigwedge_{\sigma \in S_{n}} C_{TC}(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)})$. Now define

$$[\theta_0,\ldots,\theta_{n-1}]_{\mathcal{S}}=\bigwedge\{\delta:C_{\mathcal{S}}(\theta_0,\ldots,\theta_{n-1};\delta)\}$$

2. From the definitions, it follows that

$$[\theta_0,\ldots,\theta_{n-1}]_{TC} \leq [\theta_0,\ldots,\theta_{n-1}]_{S} \leq [\theta_0,\ldots,\theta_{n-1}]_{H}$$

3. Demonstrate the **commutator nesting property** for the hyper commutator:

$$[[\theta_0,\ldots,\theta_{i-1}]_H,\theta_i,\ldots,\theta_{n-1}]_H \leq [\theta_0,\ldots,\theta_{n-1}]_H$$

4. Show that $[\theta_0, \ldots, \theta_{n-1}]_S = [\theta_0, \ldots, \theta_{n-1}]_H$ in a Taylor variety. 5. If all of the arguments are equal to θ , then

$$\begin{split} [[\theta, \dots, \theta]_{\mathcal{T}C}, \theta, \dots, \theta]_{\mathcal{T}C} &= [[\theta, \dots, \theta]_H, \theta, \dots, \theta]_H \\ &\leq [\theta, \dots, \theta]_H = [\theta, \dots, \theta]_{\mathcal{T}C} \end{split}$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲ ● ● ●

The so-called linear commutator may be defined with a centrality condition that is quantified over a higher dimensional congruence.

・ロト・日本・モート モー うへぐ

The so-called linear commutator may be defined with a centrality condition that is quantified over a higher dimensional congruence. Let A be an algebra and take α, β ∈ Con(A).

・ロト・日本・モート モー うへぐ

The so-called linear commutator may be defined with a centrality condition that is quantified over a higher dimensional congruence. Let A be an algebra and take α, β ∈ Con(A). Let

$$M^*(\alpha,\beta) = \bigg\{ \sum n_i h_i : h_i \in M(\alpha,\beta) \text{ and } \sum n_i = 1 \bigg\},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where the sum is taken in the free ternary abelian group generated by the underlying set of \mathbb{A} .

The so-called linear commutator may be defined with a centrality condition that is quantified over a higher dimensional congruence. Let A be an algebra and take α, β ∈ Con(A). Let

$$M^*(\alpha,\beta) = \bigg\{ \sum n_i h_i : h_i \in M(\alpha,\beta) \text{ and } \sum n_i = 1 \bigg\},$$

where the sum is taken in the free ternary abelian group generated by the underlying set of $\mathbb{A}.$ Now set

$$\Delta^{L}_{\alpha,\beta} = M^{*}(\alpha,\beta)|_{\mathcal{A}^{2^{2}}}$$

and define $C_L(\alpha, \beta; \delta)$ to be the usual centrality condition quantified over this new set of vertex labeled squares. The linear commutator is now defined in the obvious way.

▲□▶▲圖▶▲≣▶▲≣▶ ▲ ● ● ●

Kearnes and Szendrei showed that [α, β]_S = [α, β]_L in any Taylor variety. Is this true for higher arity also?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Kearnes and Szendrei showed that [α, β]_S = [α, β]_L in any Taylor variety. Is this true for higher arity also?
- Can two distinct polynomial clones on a finite set have the same higher dimensional congruences?