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Motivation
I The modular commutator can be equivalently defined with

either

1. the term condition, or
2. properties of a relation, usually called ∆.

Definition (Term Condition)

Let A be an algebra and take α, β, δ ∈ Con(A). We say that α
centralizes β modulo δ when the following condition is met:

I For all t ∈ Pol(A) and a0 ≡α b0 and a1 ≡β b1 with
|a0|+ |a1| = σ(t),(

t(a0, a1) ≡δ t(a0,b1) =⇒ t(b0, a0) ≡δ t(b0,b1)

)
We write CTC (α, β; δ) whenever this is true.

I The term condition may be described as a condition that is
quantified over a certain invariant relation of A which is called
the algebra of (α, β)-matrices and is denoted M(α, β).
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Matrices

I A square is the graph 〈22;E 〉, where two functions f , g ∈ 22

are connected by an edge if and only if their outputs differ in
exactly one argument.

(0, 0) (1, 0)

(0, 1) (1, 1)

I We say that a relation R on a set A is 2-dimensional if
R ⊆ A22 (R is a set of squares whos vertices are labeled by
elements of A.)

I M(α, β) is the subalgebra of A22 with generators{[
x y
x y

]
: x ≡α y

}⋃{[
y y
x x

]
: x ≡β y

}



Matrices

I A square is the graph 〈22;E 〉, where two functions f , g ∈ 22

are connected by an edge if and only if their outputs differ in
exactly one argument.

(0, 0) (1, 0)

(0, 1) (1, 1)

I We say that a relation R on a set A is 2-dimensional if
R ⊆ A22 (R is a set of squares whos vertices are labeled by
elements of A.)

I M(α, β) is the subalgebra of A22 with generators{[
x y
x y

]
: x ≡α y

}⋃{[
y y
x x

]
: x ≡β y

}



Matrices

I A square is the graph 〈22;E 〉, where two functions f , g ∈ 22

are connected by an edge if and only if their outputs differ in
exactly one argument.

(0, 0) (1, 0)

(0, 1) (1, 1)

I We say that a relation R on a set A is 2-dimensional if
R ⊆ A22 (R is a set of squares whos vertices are labeled by
elements of A.)

I M(α, β) is the subalgebra of A22 with generators{[
x y
x y

]
: x ≡α y

}⋃{[
y y
x x

]
: x ≡β y

}



Matrices

For δ ∈ Con(A) we have that α centralizes β modulo δ if the
implication

α

→

β

a b

c d

a b

c d

δ

holds for all (α, β)-matrices. This condition is abbreviated
CTC (α, β; δ).



Matrices

Similarly, we have that β centralizes α modulo δ if the
implication

α

→

β

a b

c d

a b

c d
δ

holds for all (α, β)-matrices. This condition is abbreviated
CTC (β, α; δ).



Matrices

I The binary commutator is defined to be

[α, β]TC =
∧
{δ : C (α, β; δ)}



Matrices

I The notions of matrices and centrality for three congruences
are defined similarly.

I A cube is the graph 〈23;E 〉, where two functions f , g ∈ 23 are
connected by an edge if and only if their outputs differ in
exactly one argument.

(0, 0, 0)

(0, 1, 0) (1, 1, 0)

(1, 0, 0)

(0, 1, 1)

(0, 0, 1) (1, 0, 1)

(1, 1, 1)

I We say that a relation R on a set A is 3-dimensional if
R ⊆ A32 (R is a set of cubes whos vertices are labeled by
elements of A.)
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Matrices

I For congruences θ0, θ1, θ2 ∈ Con(A), set M(θ0, θ1, θ2) ≤ A23

to be the subalgebra generated by the following labeled cubes:

x

x

x

x

y

y

y

y

y y

y y

x x
x x

x x

x x

y

y y

y

θ0

θ1

θ2

M(θ0, θ1, θ2) is called the algebra of (θ0, θ1, θ2)-matrices.



Centrality

I For δ ∈ Con(A), we say that θ0, θ1 centralize θ2 modulo δ
if the following implication holds for all (θ0, θ1, θ2)-matrices:

I This condition is abbreviated CTC (θ0, θ1, θ2; δ).
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Centrality

I Here is a picture of CTC (θ1, θ2, θ0; δ):

0

1

2

a b

c d

e f

g h

δ



Matrices

I For congruences θ0, θ1, θ2 we set

[θ0, θ1, θ2]TC =
∧
{δ : CTC (θ0, θ1, θ2; δ)}

I Higher centrality and the commutator for arity ≥ 4 are
similarly defined.
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Matrices

I An n-dimensional hypercube is the graph Hn = 〈2n;E 〉, where
two functions f , g ∈ 2k are connected by an edge if and only
if their outputs differ in exactly one argument.

I We say that a relation R on a set A is n-dimensional if
R ⊆ A2n

I Observation: The term condition definition of centrality
involving k-many congruences θ0, . . . , θk−1 is a condition that
is quantified over (θ0, . . . , θn−1)-matrices, which are certain
n-dimensional invariant relations

M(θ0, . . . , θk−1) ≤ A2n

that have generators of the form

x y

(n− 1)-dimensional cube

θif ∈ 2n such that f(i) = 0 f ∈ 2n such that f(i) = 1
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I Consider the n-dimensional hypercube Hn = 〈2n;E 〉. For any
coordinate i ∈ n, there are two (n− 1)-dimensional hyperfaces
that are ‘perpendicular’ to i :

1. (Hn)0i = 〈{f ∈ 2k : f (i) = 0};E 〉 and
2. (Hn)1i = 〈{f ∈ 2k : f (i) = 1};E 〉.

(0, 0, 0, 1) (1, 0, 0, 1)

(1, 1, 0, 1)

(0, 0, 0, 0) (1, 0, 0, 0)

(0, 1, 0, 0) (1, 1, 0, 0)

(0, 0, 1, 0) (1, 0, 1, 0)
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I Take h ∈ A2n . We consider h as a vertex labeled
n-dimensional hypercube. For any coordinate i ∈ n, there are
two (n − 1)-dimensional vertex labeled hyperfaces that are
perpendicular to i , which we denote

1. h0i and
2. h1i .

a b

c d

e f

g s

i j

k l

m n

o p

h ∈ A2n
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I For R ⊆ A2n , set

Ri = {〈h0i , h1i 〉 : h ∈ R}.

I Fact: Suppose A is a member of a permutable variety, and
take (θ0, . . . , θk−1) ∈ Con(A)n. Then,

M(θ0, . . . , θk−1)i

is a congruence relation, for all i ∈ n.

I This leads to a nice characterization of the commutator for
permutable varieties, e.g.,
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Theorem (Binary Commutator)

Let V be a permutable variety and let A ∈ V. For α, β ∈ Con(A),
the following are equivalent:

1. 〈x , y〉 ∈ [α, β]TC

2.

[
x y
x x

]
∈ M(α, β)

3.

[
a y
a x

]
∈ M(α, β) for some a ∈ A

4.

[
x y
b b

]
∈ M(α, β) for some b ∈ A.
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Higher Dimensional Congruence Relations

Definition
Let R ⊆ A2n be an n-dimensional relation on some set A. R is
called an n-dimensional equivalence relation if for all i ∈ n, each
Ri is an equivalence relation.

Definition
Let A be an algebra with underlying set A. Let R ∈ A2n be an
n-dimensional equivalence relation. R is called an n-dimensional
congruence if R is preserved by the basic operations of A.

I Fix n ≥ 1. The collection of all n-dimensional congruences of
an algebra A is an algebraic lattice, which we denote by
Conn(A).

I There are n distinct embeddings from Con1(A) into Conn(A).
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Higher Dimensional Congruence Relations

I Fix a dimension n and take i ∈ n. For a pair 〈x , y〉 ∈ A2, let
Cubei (〈x , y〉) ∈ A2n be such that

1.
(

Cubei (〈x , y〉)
)0
i

is the (n − 1)-dimensional cube with each
vertex labeled by x .

2.
(

Cubei (〈x , y〉)
)1
i

is the (n − 1)-dimensional cube with each
vertex labeled by y .

I Define φin : Con1(A)→ Conn(A) by

φin(α) = {Cubei (〈x , y〉) : 〈x , y〉 ∈ α}
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Characterizing Joins

I Let A be an algebra and let θ be an equivalence relation on A.
Then, θ is an admissible relation if and only if θ is compatible
with the unary polynomials of A.

I This generalizes to:

Theorem
Let A be an algebra and let n ≥ 1. An n-dimensional equivalence
relation θ is admissible if and only if θ is compatible with the n-ary
polynomials of A.

I ∆θ0,...,θn−1 =
∨

i φ
i
n(θi ) is therefore obtained by

1. Closing
⋃
φin(θi ) under all n-ary polynomials and then

2. taking a sequence of transitive closures, cycling through all
possible directions possibly ω-many times.

I Notice: M(θ0, . . . , θn−1) ≤ ∆θ0,...,θn−1 . We use this larger set
to define a stronger term condition.
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Hypercentrality

For δ ∈ Con(A) we have that α hypercentralizes β modulo δ if
the implication

α

→

β
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c d

δ

holds for all members of ∆α,β. This condition is abbreviated
CH(α, β; δ).



Hypercentrality

Similarly, we have that β hypercentralizes α modulo δ if the
implication

α
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holds for all members of ∆α,β. This condition is abbreviated
CH(β, α; δ).



Hypercentrality

I For congruences θ0, θ1 we set

[θ0, θ1]H =
∧
{δ : CH(θ0, θ1; δ)}

I Higher arity hypercentrality and the higher arity
hypercommutator similarly defined.
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Theorem (Binary Hyper Commutator)

Let A be an algebra. For α, β ∈ Con(A), the following are
equivalent:

1. 〈x , y〉 ∈ [α, β]H

2.

[
x y
x x

]
∈ ∆α,β

3.

[
a y
a x

]
∈ ∆α,β for some a ∈ A

4.

[
x y
b b

]
∈ ∆α,β for some b ∈ A.

I A similar characterization of the higher arity hyper
commutator also holds.
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Nilpotence and Supernilpotence

Definition
Let A be an algebra and let θ ∈ Con(A). Set (θ]0 = θ and
(θ]i+1 = [(θ]i , θ]TC .

1. If θ is such that (θ]n = 0, then θ is said to be n-step
nilpotent.

2. If θ is such that [θ, . . . , θ]︸ ︷︷ ︸
n+1

= 0, then θ is said to be n-step

supernilpotent.

I For permutable varieties, Aichinger and Mudrinski showed
that supernilpotence implies nilpotence.

I This is probably true for modular variates (only written up for
the ternary case.)
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Possible Approach for Taylor Varieties

I Strategy:
1. Define the symmetric commutator: Define

CS(θ0, . . . , θn−1; δ) =
∧

σ∈Sn
CTC (θσ(0), . . . , θσ(n−1)). Now

define

[θ0, . . . , θn−1]S =
∧
{δ : CS(θ0, . . . , θn−1; δ)}

2. From the definitions, it follows that

[θ0, . . . , θn−1]TC ≤ [θ0, . . . , θn−1]S ≤ [θ0, . . . , θn−1]H

3. Demonstrate the commutator nesting property for the hyper
commutator:

[[θ0, . . . , θi−1]H , θi , . . . , θn−1]H ≤ [θ0, . . . , θn−1]H

4. Show that [θ0, . . . , θn−1]S = [θ0, . . . , θn−1]H in a Taylor variety.
5. If all of the arguments are equal to θ, then

[[θ, . . . , θ]TC , θ, . . . , θ]TC = [[θ, . . . , θ]H , θ, . . . , θ]H

≤ [θ, . . . , θ]H = [θ, . . . , θ]TC
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2. From the definitions, it follows that

[θ0, . . . , θn−1]TC ≤ [θ0, . . . , θn−1]S ≤ [θ0, . . . , θn−1]H

3. Demonstrate the commutator nesting property for the hyper
commutator:

[[θ0, . . . , θi−1]H , θi , . . . , θn−1]H ≤ [θ0, . . . , θn−1]H

4. Show that [θ0, . . . , θn−1]S = [θ0, . . . , θn−1]H in a Taylor variety.

5. If all of the arguments are equal to θ, then

[[θ, . . . , θ]TC , θ, . . . , θ]TC = [[θ, . . . , θ]H , θ, . . . , θ]H

≤ [θ, . . . , θ]H = [θ, . . . , θ]TC
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Some Observations and Questions

I The so-called linear commutator may be defined with a
centrality condition that is quantified over a higher
dimensional congruence. Let A be an algebra and take
α, β ∈ Con(A). Let

M∗(α, β) =

{∑
nihi : hi ∈ M(α, β) and

∑
ni = 1

}
,

where the sum is taken in the free ternary abelian group
generated by the underlying set of A. Now set

∆L
α,β = M∗(α, β)|

A22

and define CL(α, β; δ) to be the usual centrality condition
quantified over this new set of vertex labeled squares. The
linear commutator is now defined in the obvious way.
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Some Observations and Questions

I Kearnes and Szendrei showed that [α, β]S = [α, β]L in any
Taylor variety. Is this true for higher arity also?

I Can two distinct polynomial clones on a finite set have the
same higher dimensional congruences?
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