Higher Dimensional Congruences

Andrew Moorhead

Vanderbilt University
May 19, 2018

Overview of Talk

1. Motivation from Commutator Theory

Overview of Talk

1. Motivation from Commutator Theory
2. Higher Dimensional Congruence Relations

Overview of Talk

1. Motivation from Commutator Theory
2. Higher Dimensional Congruence Relations
3. A Stronger Term Condition and Commutator

Overview of Talk

1. Motivation from Commutator Theory
2. Higher Dimensional Congruence Relations
3. A Stronger Term Condition and Commutator
4. Supernilpotence

Overview of Talk

1. Motivation from Commutator Theory
2. Higher Dimensional Congruence Relations
3. A Stronger Term Condition and Commutator
4. Supernilpotence
5. Questions and Observations

Overview of Talk

1. Motivation from Commutator Theory
2. Higher Dimensional Congruence Relations
3. A Stronger Term Condition and Commutator
4. Supernilpotence
5. Questions and Observations

Motivation

- The modular commutator can be equivalently defined with either

Motivation

- The modular commutator can be equivalently defined with either

1. the term condition, or

Motivation

- The modular commutator can be equivalently defined with either

1. the term condition, or
2. properties of a relation, usually called Δ.

Motivation

- The modular commutator can be equivalently defined with either

1. the term condition, or
2. properties of a relation, usually called Δ.

Definition (Term Condition)
Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \operatorname{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

Motivation

- The modular commutator can be equivalently defined with either

1. the term condition, or
2. properties of a relation, usually called Δ.

Definition (Term Condition)
Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \operatorname{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

- For all $t \in \operatorname{Pol}(\mathbb{A})$ and $\mathbf{a}_{0} \equiv{ }_{\alpha} \mathbf{b}_{0}$ and $\mathbf{a}_{1} \equiv{ }_{\beta} \mathbf{b}_{1}$ with $\left|\mathbf{a}_{0}\right|+\left|\mathbf{a}_{1}\right|=\sigma(t)$,

$$
\left(t\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right) \equiv_{\delta} t\left(\mathbf{a}_{0}, \mathbf{b}_{1}\right) \Longrightarrow t\left(\mathbf{b}_{0}, \mathbf{a}_{0}\right) \equiv_{\delta} t\left(\mathbf{b}_{0}, \mathbf{b}_{1}\right)\right)
$$

Motivation

- The modular commutator can be equivalently defined with either

1. the term condition, or
2. properties of a relation, usually called Δ.

Definition (Term Condition)
Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \operatorname{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

- For all $t \in \operatorname{Pol}(\mathbb{A})$ and $\mathbf{a}_{0} \equiv{ }_{\alpha} \mathbf{b}_{0}$ and $\mathbf{a}_{1} \equiv{ }_{\beta} \mathbf{b}_{1}$ with $\left|\mathbf{a}_{0}\right|+\left|\mathbf{a}_{1}\right|=\sigma(t)$,

$$
\left(t\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right) \equiv_{\delta} t\left(\mathbf{a}_{0}, \mathbf{b}_{1}\right) \Longrightarrow t\left(\mathbf{b}_{0}, \mathbf{a}_{0}\right) \equiv_{\delta} t\left(\mathbf{b}_{0}, \mathbf{b}_{1}\right)\right)
$$

We write $C_{T C}(\alpha, \beta ; \delta)$ whenever this is true.

Motivation

- The modular commutator can be equivalently defined with either

1. the term condition, or
2. properties of a relation, usually called Δ.

Definition (Term Condition)

Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \operatorname{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

- For all $t \in \operatorname{Pol}(\mathbb{A})$ and $\mathbf{a}_{0} \equiv{ }_{\alpha} \mathbf{b}_{0}$ and $\mathbf{a}_{1} \equiv{ }_{\beta} \mathbf{b}_{1}$ with $\left|\mathbf{a}_{0}\right|+\left|\mathbf{a}_{1}\right|=\sigma(t)$,

$$
\left(t\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right) \equiv_{\delta} t\left(\mathbf{a}_{0}, \mathbf{b}_{1}\right) \Longrightarrow t\left(\mathbf{b}_{0}, \mathbf{a}_{0}\right) \equiv_{\delta} t\left(\mathbf{b}_{0}, \mathbf{b}_{1}\right)\right)
$$

We write $C_{T C}(\alpha, \beta ; \delta)$ whenever this is true.

- The term condition may be described as a condition that is quantified over a certain invariant relation of \mathbb{A} which is called the algebra of (α, β)-matrices and is denoted $M(\alpha, \beta)$.

Matrices

- A square is the graph $\left\langle 2^{2} ; E\right\rangle$, where two functions $f, g \in 2^{2}$ are connected by an edge if and only if their outputs differ in exactly one argument.

Matrices

- A square is the graph $\left\langle 2^{2} ; E\right\rangle$, where two functions $f, g \in 2^{2}$ are connected by an edge if and only if their outputs differ in exactly one argument.

- We say that a relation R on a set A is 2 -dimensional if $R \subseteq A^{2^{2}}$ (R is a set of squares whos vertices are labeled by elements of A.)

Matrices

- A square is the graph $\left\langle 2^{2} ; E\right\rangle$, where two functions $f, g \in 2^{2}$ are connected by an edge if and only if their outputs differ in exactly one argument.

- We say that a relation R on a set A is 2-dimensional if $R \subseteq A^{2^{2}}$ (R is a set of squares whos vertices are labeled by elements of A.)
- $M(\alpha, \beta)$ is the subalgebra of \mathbb{A}^{2} with generators

$$
\left\{\left[\begin{array}{ll}
x & y \\
x & y
\end{array}\right]: x \equiv_{\alpha} y\right\} \bigcup\left\{\left[\begin{array}{ll}
y & y \\
x & x
\end{array}\right]: x \equiv_{\beta} y\right\}
$$

Matrices

For $\delta \in \operatorname{Con}(\mathbb{A})$ we have that α centralizes β modulo δ if the implication

holds for all (α, β)-matrices. This condition is abbreviated $C_{T C}(\alpha, \beta ; \delta)$.

Matrices

Similarly, we have that β centralizes α modulo δ if the implication

holds for all (α, β)-matrices. This condition is abbreviated $C_{T C}(\beta, \alpha ; \delta)$.

Matrices

- The binary commutator is defined to be

$$
[\alpha, \beta]_{T C}=\bigwedge\{\delta: C(\alpha, \beta ; \delta)\}
$$

Matrices

- The notions of matrices and centrality for three congruences are defined similarly.

Matrices

- The notions of matrices and centrality for three congruences are defined similarly.
- A cube is the graph $\left\langle 2^{3} ; E\right\rangle$, where two functions $f, g \in 2^{3}$ are connected by an edge if and only if their outputs differ in exactly one argument.

Matrices

- The notions of matrices and centrality for three congruences are defined similarly.
- A cube is the graph $\left\langle 2^{3} ; E\right\rangle$, where two functions $f, g \in 2^{3}$ are connected by an edge if and only if their outputs differ in exactly one argument.

- We say that a relation R on a set A is 3 -dimensional if $R \subseteq A^{3^{2}}$ (R is a set of cubes whos vertices are labeled by elements of A.)

Matrices

- The notions of matrices and centrality for three congruences are defined similarly.
- A cube is the graph $\left\langle 2^{3} ; E\right\rangle$, where two functions $f, g \in 2^{3}$ are connected by an edge if and only if their outputs differ in exactly one argument.

- We say that a relation R on a set A is 3 -dimensional if $R \subseteq A^{3^{2}}$ (R is a set of cubes whos vertices are labeled by elements of A.)

Matrices

- For congruences $\theta_{0}, \theta_{1}, \theta_{2} \in \operatorname{Con}(\mathbb{A})$, set $M\left(\theta_{0}, \theta_{1}, \theta_{2}\right) \leq \mathbb{A}^{2^{3}}$ to be the subalgebra generated by the following labeled cubes:

$M\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$ is called the algebra of $\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$-matrices.

Centrality

- For $\delta \in \operatorname{Con}(\mathbb{A})$, we say that θ_{0}, θ_{1} centralize θ_{2} modulo δ if the following implication holds for all $\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$-matrices:

Centrality

- For $\delta \in \operatorname{Con}(\mathbb{A})$, we say that θ_{0}, θ_{1} centralize θ_{2} modulo δ if the following implication holds for all $\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$-matrices:

Centrality

- For $\delta \in \operatorname{Con}(\mathbb{A})$, we say that θ_{0}, θ_{1} centralize θ_{2} modulo δ if the following implication holds for all $\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$-matrices:

Centrality

- For $\delta \in \operatorname{Con}(\mathbb{A})$, we say that θ_{0}, θ_{1} centralize θ_{2} modulo δ if the following implication holds for all $\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$-matrices:

Centrality

- For $\delta \in \operatorname{Con}(\mathbb{A})$, we say that θ_{0}, θ_{1} centralize θ_{2} modulo δ if the following implication holds for all $\left(\theta_{0}, \theta_{1}, \theta_{2}\right)$-matrices:

- This condition is abbreviated $C_{T C}\left(\theta_{0}, \theta_{1}, \theta_{2} ; \delta\right)$.

Centrality

- Here is a picture of $C_{T C}\left(\theta_{1}, \theta_{2}, \theta_{0} ; \delta\right)$:

Matrices

- For congruences $\theta_{0}, \theta_{1}, \theta_{2}$ we set

$$
\left[\theta_{0}, \theta_{1}, \theta_{2}\right]_{T C}=\bigwedge\left\{\delta: C_{T C}\left(\theta_{0}, \theta_{1}, \theta_{2} ; \delta\right)\right\}
$$

Matrices

- For congruences $\theta_{0}, \theta_{1}, \theta_{2}$ we set

$$
\left[\theta_{0}, \theta_{1}, \theta_{2}\right]_{T C}=\bigwedge\left\{\delta: C_{T C}\left(\theta_{0}, \theta_{1}, \theta_{2} ; \delta\right)\right\}
$$

- Higher centrality and the commutator for arity ≥ 4 are similarly defined.

Matrices

- An n-dimensional hypercube is the graph $\mathbb{H}_{n}=\left\langle 2^{n} ; E\right\rangle$, where two functions $f, g \in 2^{k}$ are connected by an edge if and only if their outputs differ in exactly one argument.

Matrices

- An n-dimensional hypercube is the graph $\mathbb{H}_{n}=\left\langle 2^{n} ; E\right\rangle$, where two functions $f, g \in 2^{k}$ are connected by an edge if and only if their outputs differ in exactly one argument.
- We say that a relation R on a set A is n-dimensional if $R \subseteq A^{2^{n}}$

Matrices

- An n-dimensional hypercube is the graph $\mathbb{H}_{n}=\left\langle 2^{n} ; E\right\rangle$, where two functions $f, g \in 2^{k}$ are connected by an edge if and only if their outputs differ in exactly one argument.
- We say that a relation R on a set A is n-dimensional if $R \subseteq A^{2^{n}}$
- Observation: The term condition definition of centrality involving k-many congruences $\theta_{0}, \ldots, \theta_{k-1}$ is a condition that is quantified over $\left(\theta_{0}, \ldots, \theta_{n-1}\right)$-matrices, which are certain n-dimensional invariant relations

$$
M\left(\theta_{0}, \ldots, \theta_{k-1}\right) \leq \mathbb{A}^{2^{n}}
$$

that have generators of the form

- Consider the n-dimensional hypercube $\mathbb{H}_{n}=\left\langle 2^{n} ; E\right\rangle$. For any coordinate $i \in n$, there are two ($n-1$)-dimensional hyperfaces that are 'perpendicular' to i :
- Consider the n-dimensional hypercube $\mathbb{H}_{n}=\left\langle 2^{n} ; E\right\rangle$. For any coordinate $i \in n$, there are two ($n-1$)-dimensional hyperfaces that are 'perpendicular' to i :

1. $\left(\mathbb{H}_{n}\right)_{i}^{0}=\left\langle\left\{f \in 2^{k}: f(i)=0\right\} ; E\right\rangle$ and

- Consider the n-dimensional hypercube $\mathbb{H}_{n}=\left\langle 2^{n} ; E\right\rangle$. For any coordinate $i \in n$, there are two ($n-1$)-dimensional hyperfaces that are 'perpendicular' to i :

1. $\left(\mathbb{H}_{n}\right)_{i}^{0}=\left\langle\left\{f \in 2^{k}: f(i)=0\right\} ; E\right\rangle$ and
2. $\left(\mathbb{H}_{n}\right)_{i}^{1}=\left\langle\left\{f \in 2^{k}: f(i)=1\right\} ; E\right\rangle$.

- Consider the n-dimensional hypercube $\mathbb{H}_{n}=\left\langle 2^{n} ; E\right\rangle$. For any coordinate $i \in n$, there are two ($n-1$)-dimensional hyperfaces that are 'perpendicular' to i :

1. $\left(\mathbb{H}_{n}\right)_{i}^{0}=\left\langle\left\{f \in 2^{k}: f(i)=0\right\} ; E\right\rangle$ and
2. $\left(\mathbb{H}_{n}\right)_{i}^{1}=\left\langle\left\{f \in 2^{k}: f(i)=1\right\} ; E\right\rangle$.

- Consider the n-dimensional hypercube $\mathbb{H}_{n}=\left\langle 2^{n} ; E\right\rangle$. For any coordinate $i \in n$, there are two ($n-1$)-dimensional hyperfaces that are 'perpendicular' to i :

1. $\left(\mathbb{H}_{n}\right)_{i}^{0}=\left\langle\left\{f \in 2^{k}: f(i)=0\right\} ; E\right\rangle$ and
2. $\left(\mathbb{H}_{n}\right)_{i}^{1}=\left\langle\left\{f \in 2^{k}: f(i)=1\right\} ; E\right\rangle$.

- Consider the n-dimensional hypercube $\mathbb{H}_{n}=\left\langle 2^{n} ; E\right\rangle$. For any coordinate $i \in n$, there are two ($n-1$)-dimensional hyperfaces that are 'perpendicular' to i :

1. $\left(\mathbb{H}_{n}\right)_{i}^{0}=\left\langle\left\{f \in 2^{k}: f(i)=0\right\} ; E\right\rangle$ and
2. $\left(\mathbb{H}_{n}\right)_{i}^{1}=\left\langle\left\{f \in 2^{k}: f(i)=1\right\} ; E\right\rangle$.

- Take $h \in A^{2^{n}}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two ($n-1$)-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote
- Take $h \in A^{2^{n}}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two ($n-1$)-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

1. h_{i}^{0} and

- Take $h \in A^{2^{n}}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two ($n-1$)-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

1. h_{i}^{0} and
2. h_{i}^{1}.

- Take $h \in A^{2^{n}}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two ($n-1$)-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

1. h_{i}^{0} and
2. h_{i}^{1}.

- Take $h \in A^{2^{n}}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two ($n-1$)-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

1. h_{i}^{0} and
2. h_{i}^{1}.

- Take $h \in A^{2^{n}}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two ($n-1$)-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

1. h_{i}^{0} and
2. h_{i}^{1}.

- For $R \subseteq A^{2^{n}}$, set

$$
R_{i}=\left\{\left\langle h_{i}^{0}, h_{i}^{1}\right\rangle: h \in R\right\} .
$$

- For $R \subseteq A^{2^{n}}$, set

$$
R_{i}=\left\{\left\langle h_{i}^{0}, h_{i}^{1}\right\rangle: h \in R\right\} .
$$

- Fact: Suppose \mathbb{A} is a member of a permutable variety, and take $\left(\theta_{0}, \ldots, \theta_{k-1}\right) \in \operatorname{Con}(\mathbb{A})^{n}$. Then,

$$
M\left(\theta_{0}, \ldots, \theta_{k-1}\right)_{i}
$$

is a congruence relation, for all $i \in n$.

- For $R \subseteq A^{2^{n}}$, set

$$
R_{i}=\left\{\left\langle h_{i}^{0}, h_{i}^{1}\right\rangle: h \in R\right\} .
$$

- Fact: Suppose \mathbb{A} is a member of a permutable variety, and take $\left(\theta_{0}, \ldots, \theta_{k-1}\right) \in \operatorname{Con}(\mathbb{A})^{n}$. Then,

$$
M\left(\theta_{0}, \ldots, \theta_{k-1}\right)_{i}
$$

is a congruence relation, for all $i \in n$.

- This leads to a nice characterization of the commutator for permutable varieties, e.g.,

Theorem (Binary Commutator)
Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, the following are equivalent:

Theorem (Binary Commutator)
Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y\rangle \in[\alpha, \beta]_{T C}$

Theorem (Binary Commutator)
Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y\rangle \in[\alpha, \beta]_{T C}$
2. $\left[\begin{array}{ll}x & y \\ x & x\end{array}\right] \in M(\alpha, \beta)$

Theorem (Binary Commutator)
Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y\rangle \in[\alpha, \beta]_{T C}$
2. $\left[\begin{array}{ll}x & y \\ x & x\end{array}\right] \in M(\alpha, \beta)$
3. $\left[\begin{array}{ll}a & y \\ a & x\end{array}\right] \in M(\alpha, \beta)$ for some $a \in A$

Theorem (Binary Commutator)
Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y\rangle \in[\alpha, \beta]_{T C}$
2. $\left[\begin{array}{ll}x & y \\ x & x\end{array}\right] \in M(\alpha, \beta)$
3. $\left[\begin{array}{ll}a & y \\ a & x\end{array}\right] \in M(\alpha, \beta)$ for some $a \in A$
4. $\left[\begin{array}{ll}x & y \\ b & b\end{array}\right] \in M(\alpha, \beta)$ for some $b \in A$.

- Let \mathcal{V} be a modular variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, define $\Delta_{\alpha, \beta}$ to be the transitive closure of $M(\alpha, \beta)_{0}$.
- Let \mathcal{V} be a modular variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, define $\Delta_{\alpha, \beta}$ to be the transitive closure of $M(\alpha, \beta)_{0}$.

1

- Let \mathcal{V} be a modular variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, define $\Delta_{\alpha, \beta}$ to be the transitive closure of $M(\alpha, \beta)_{0}$.

- Fact: Both $\left(\Delta_{\alpha, \beta}\right)_{0}$ and $\left(\Delta_{\alpha, \beta}\right)_{1}$ are congruence relations.

Theorem (Binary Commutator)
Let \mathcal{V} be a modular variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y\rangle \in[\alpha, \beta]_{T C}$
2. $\left[\begin{array}{cc}x & y \\ x & x\end{array}\right] \in \Delta_{\alpha, \beta}$
3. $\left[\begin{array}{ll}a & y \\ a & x\end{array}\right] \in \Delta_{\alpha, \beta}$ for some $a \in A$
4. $\left[\begin{array}{ll}x & y \\ b & b\end{array}\right] \in \Delta_{\alpha, \beta}$ for some $b \in A$.

Theorem: Let \mathcal{V} be a permutable variety. Take $\theta_{0}, \theta_{1}, \theta_{2} \in \operatorname{Con}(\mathbb{A})$ for $\mathbb{A} \in \mathcal{V}$. The following are equivalent:
(1) $\langle x, y\rangle \in\left[\theta_{0}, \theta_{1}, \theta_{2}\right]$

There exist elements of \mathbb{A} such that

Theorem: Let \mathcal{V} be a modular variety. Take $\theta_{0}, \theta_{1}, \theta_{2} \in \operatorname{Con}(\mathbb{A})$ for $\mathbb{A} \in \mathcal{V}$. The following are equivalent:
(1) $\langle x, y\rangle \in\left[\theta_{0}, \theta_{1}, \theta_{2}\right]$
(2)

There exist elements of \mathbb{A} such that

Higher Dimensional Congruence Relations

Definition

Let $R \subseteq A^{2^{n}}$ be an n-dimensional relation on some set A. R is called an n-dimensional equivalence relation if for all $i \in n$, each R_{i} is an equivalence relation.

Higher Dimensional Congruence Relations

Definition

Let $R \subseteq A^{2^{n}}$ be an n-dimensional relation on some set A. R is called an n-dimensional equivalence relation if for all $i \in n$, each R_{i} is an equivalence relation.

Definition

Let \mathbb{A} be an algebra with underlying set A. Let $R \in A^{2^{n}}$ be an n-dimensional equivalence relation. R is called an n-dimensional congruence if R is preserved by the basic operations of \mathbb{A}.

Higher Dimensional Congruence Relations

Definition

Let $R \subseteq A^{2^{n}}$ be an n-dimensional relation on some set A. R is called an n-dimensional equivalence relation if for all $i \in n$, each R_{i} is an equivalence relation.

Definition

Let \mathbb{A} be an algebra with underlying set A. Let $R \in A^{2^{n}}$ be an n-dimensional equivalence relation. R is called an n-dimensional congruence if R is preserved by the basic operations of \mathbb{A}.

- Fix $n \geq 1$. The collection of all n-dimensional congruences of an algebra \mathbb{A} is an algebraic lattice, which we denote by $\operatorname{Con}_{n}(\mathbb{A})$.

Higher Dimensional Congruence Relations

Definition

Let $R \subseteq A^{2^{n}}$ be an n-dimensional relation on some set A. R is called an n-dimensional equivalence relation if for all $i \in n$, each R_{i} is an equivalence relation.

Definition

Let \mathbb{A} be an algebra with underlying set A. Let $R \in A^{2^{n}}$ be an n-dimensional equivalence relation. R is called an n-dimensional congruence if R is preserved by the basic operations of \mathbb{A}.

- Fix $n \geq 1$. The collection of all n-dimensional congruences of an algebra \mathbb{A} is an algebraic lattice, which we denote by $\operatorname{Con}_{n}(\mathbb{A})$.
- There are n distinct embeddings from $\operatorname{Con}_{1}(\mathbb{A})$ into $\operatorname{Con}_{n}(\mathbb{A})$.

Define $\Delta_{\alpha, \beta}=\phi_{2}^{0}(\alpha) \vee \phi_{2}^{1}(\beta)$

$$
\begin{aligned}
& \phi_{2}^{0}(\alpha)=\left\{\left[\begin{array}{ll}
x & y \\
x & y
\end{array}\right]:\langle x, y\rangle \in \alpha\right\} \\
& \phi_{2}^{1}(\beta)=\left\{\left[\begin{array}{ll}
x & x \\
y & y
\end{array}\right]:\langle x, y\rangle \in \beta\right\}
\end{aligned}
$$

Higher Dimensional Congruence Relations

- Fix a dimension n and take $i \in n$. For a pair $\langle x, y\rangle \in A^{2}$, let Cube $_{i}(\langle x, y\rangle) \in A^{2^{n}}$ be such that

Higher Dimensional Congruence Relations

- Fix a dimension n and take $i \in n$. For a pair $\langle x, y\rangle \in A^{2}$, let Cube $_{i}(\langle x, y\rangle) \in A^{2^{n}}$ be such that

1. $\left(\text { Cube }_{i}(\langle x, y\rangle)\right)_{i}^{0}$ is the $(n-1)$-dimensional cube with each vertex labeled by x.

Higher Dimensional Congruence Relations

- Fix a dimension n and take $i \in n$. For a pair $\langle x, y\rangle \in A^{2}$, let Cube $_{i}(\langle x, y\rangle) \in A^{2^{n}}$ be such that

1. $\left(\text { Cube }_{i}(\langle x, y\rangle)\right)_{i}^{0}$ is the $(n-1)$-dimensional cube with each vertex labeled by x.

Higher Dimensional Congruence Relations

- Fix a dimension n and take $i \in n$. For a pair $\langle x, y\rangle \in A^{2}$, let Cube $_{i}(\langle x, y\rangle) \in A^{2^{n}}$ be such that

1. $\left(\text { Cube }_{i}(\langle x, y\rangle)\right)_{i}^{0}$ is the $(n-1)$-dimensional cube with each vertex labeled by x.
2. $\left(\text { Cube }_{i}(\langle x, y\rangle)\right)_{i}^{1}$ is the $(n-1)$-dimensional cube with each vertex labeled by y.

- Define $\phi_{n}^{i}: \operatorname{Con}_{1}(\mathbb{A}) \rightarrow \operatorname{Con}_{n}(\mathbb{A})$ by

$$
\phi_{n}^{i}(\alpha)=\left\{\operatorname{Cube}_{i}(\langle x, y\rangle):\langle x, y\rangle \in \alpha\right\}
$$

Define $\Delta_{\theta_{0}, \ldots, \theta_{n-1}}=\bigvee_{i} \phi_{n}^{i}\left(\theta_{i}\right)$

Characterizing Joins

- Let \mathbb{A} be an algebra and let θ be an equivalence relation on A. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of \mathbb{A}.

Characterizing Joins

- Let \mathbb{A} be an algebra and let θ be an equivalence relation on A. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of \mathbb{A}.
- This generalizes to:

Theorem
Let \mathbb{A} be an algebra and let $n \geq 1$. An n-dimensional equivalence relation θ is admissible if and only if θ is compatible with the n-ary polynomials of \mathbb{A}.

Characterizing Joins

- Let \mathbb{A} be an algebra and let θ be an equivalence relation on A. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of \mathbb{A}.
- This generalizes to:

Theorem
Let \mathbb{A} be an algebra and let $n \geq 1$. An n-dimensional equivalence relation θ is admissible if and only if θ is compatible with the n-ary polynomials of \mathbb{A}.

- $\Delta_{\theta_{0}, \ldots, \theta_{n-1}}=\bigvee_{i} \phi_{n}^{i}\left(\theta_{i}\right)$ is therefore obtained by

1. Closing $\bigcup \phi_{n}^{i}\left(\theta_{i}\right)$ under all n-ary polynomials and then

Characterizing Joins

- Let \mathbb{A} be an algebra and let θ be an equivalence relation on A. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of \mathbb{A}.
- This generalizes to:

Theorem

Let \mathbb{A} be an algebra and let $n \geq 1$. An n-dimensional equivalence relation θ is admissible if and only if θ is compatible with the n-ary polynomials of \mathbb{A}.

- $\Delta_{\theta_{0}, \ldots, \theta_{n-1}}=\bigvee_{i} \phi_{n}^{i}\left(\theta_{i}\right)$ is therefore obtained by

1. Closing $\bigcup \phi_{n}^{i}\left(\theta_{i}\right)$ under all n-ary polynomials and then
2. taking a sequence of transitive closures, cycling through all possible directions possibly ω-many times.

- Notice: $M\left(\theta_{0}, \ldots, \theta_{n-1}\right) \leq \Delta_{\theta_{0}, \ldots, \theta_{n-1}}$. We use this larger set to define a stronger term condition.

Hypercentrality

For $\delta \in \operatorname{Con}(\mathbb{A})$ we have that α hypercentralizes β modulo δ if the implication

holds for all members of $\Delta_{\alpha, \beta}$. This condition is abbreviated $C_{H}(\alpha, \beta ; \delta)$.

Hypercentrality

Similarly, we have that β hypercentralizes α modulo δ if the implication

holds for all members of $\Delta_{\alpha, \beta}$. This condition is abbreviated $C_{H}(\beta, \alpha ; \delta)$.

Hypercentrality

- For congruences θ_{0}, θ_{1} we set

$$
\left[\theta_{0}, \theta_{1}\right]_{H}=\bigwedge\left\{\delta: C_{H}\left(\theta_{0}, \theta_{1} ; \delta\right)\right\}
$$

Hypercentrality

- For congruences θ_{0}, θ_{1} we set

$$
\left[\theta_{0}, \theta_{1}\right]_{H}=\bigwedge\left\{\delta: C_{H}\left(\theta_{0}, \theta_{1} ; \delta\right)\right\}
$$

- Higher arity hypercentrality and the higher arity hypercommutator similarly defined.

Theorem (Binary Hyper Commutator)
Let \mathbb{A} be an algebra. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y\rangle \in[\alpha, \beta]_{H}$
2. $\left[\begin{array}{cc}x & y \\ x & x\end{array}\right] \in \Delta_{\alpha, \beta}$
3. $\left[\begin{array}{ll}a & y \\ a & x\end{array}\right] \in \Delta_{\alpha, \beta}$ for some $a \in A$
4. $\left[\begin{array}{ll}x & y \\ b & b\end{array}\right] \in \Delta_{\alpha, \beta}$ for some $b \in A$.

Theorem (Binary Hyper Commutator)

Let \mathbb{A} be an algebra. For $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y\rangle \in[\alpha, \beta]_{H}$
2. $\left[\begin{array}{ll}x & y \\ x & x\end{array}\right] \in \Delta_{\alpha, \beta}$
3. $\left[\begin{array}{ll}a & y \\ a & x\end{array}\right] \in \Delta_{\alpha, \beta}$ for some $a \in A$
4. $\left[\begin{array}{ll}x & y \\ b & b\end{array}\right] \in \Delta_{\alpha, \beta}$ for some $b \in A$.

- A similar characterization of the higher arity hyper commutator also holds.

Nilpotence and Supernilpotence

Nilpotence and Supernilpotence

Definition
Let \mathbb{A} be an algebra and let $\theta \in \operatorname{Con}(\mathbb{A})$. Set $(\theta]^{0}=\theta$ and $(\theta]^{i+1}=\left[(\theta]_{i}, \theta\right]_{T C}$.

Nilpotence and Supernilpotence

Definition

Let \mathbb{A} be an algebra and let $\theta \in \operatorname{Con}(\mathbb{A})$. Set $(\theta]^{0}=\theta$ and $(\theta]^{i+1}=\left[(\theta]_{i}, \theta\right]_{T C}$.

1. If θ is such that $(\theta]^{n}=0$, then θ is said to be n-step nilpotent.

Nilpotence and Supernilpotence

Definition

Let \mathbb{A} be an algebra and let $\theta \in \operatorname{Con}(\mathbb{A})$. Set $(\theta]^{0}=\theta$ and $(\theta]^{i+1}=\left[(\theta]_{i}, \theta\right]_{T C}$.

1. If θ is such that $(\theta]^{n}=0$, then θ is said to be n-step nilpotent.
2. If θ is such that $\underbrace{[\theta, \ldots, \theta]}_{n+1}=0$, then θ is said to be n-step supernilpotent.

Nilpotence and Supernilpotence

Definition

Let \mathbb{A} be an algebra and let $\theta \in \operatorname{Con}(\mathbb{A})$. Set $(\theta]^{0}=\theta$ and $(\theta]^{i+1}=\left[(\theta]_{i}, \theta\right]_{T C}$.

1. If θ is such that $(\theta]^{n}=0$, then θ is said to be n-step nilpotent.
2. If θ is such that $\underbrace{[\theta, \ldots, \theta]}_{n+1}=0$, then θ is said to be n-step supernilpotent.

- For permutable varieties, Aichinger and Mudrinski showed that supernilpotence implies nilpotence.

Nilpotence and Supernilpotence

Definition

Let \mathbb{A} be an algebra and let $\theta \in \operatorname{Con}(\mathbb{A})$. Set $(\theta]^{0}=\theta$ and $(\theta]^{i+1}=\left[(\theta]_{i}, \theta\right]_{T C}$.

1. If θ is such that $(\theta]^{n}=0$, then θ is said to be n-step nilpotent.
2. If θ is such that $\underbrace{[\theta, \ldots, \theta]}_{n+1}=0$, then θ is said to be n-step supernilpotent.

- For permutable varieties, Aichinger and Mudrinski showed that supernilpotence implies nilpotence.
- This is probably true for modular variates (only written up for the ternary case.)

Possible Approach for Taylor Varieties

Possible Approach for Taylor Varieties

- Strategy:

Possible Approach for Taylor Varieties

- Strategy:

1. Define the symmetric commutator: Define $C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)=\bigwedge_{\sigma \in S_{n}} C_{T C}\left(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)}\right)$.

Possible Approach for Taylor Varieties

- Strategy:

1. Define the symmetric commutator: Define $C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)=\bigwedge_{\sigma \in S_{n}} C_{T C}\left(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)}\right)$. Now define

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S}=\bigwedge\left\{\delta: C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)\right\}
$$

Possible Approach for Taylor Varieties

- Strategy:

1. Define the symmetric commutator: Define
$C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)=\bigwedge_{\sigma \in S_{n}} C_{T C}\left(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)}\right)$. Now define

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S}=\bigwedge\left\{\delta: C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)\right\}
$$

2. From the definitions, it follows that

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{T C} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}
$$

Possible Approach for Taylor Varieties

- Strategy:

1. Define the symmetric commutator: Define
$C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)=\bigwedge_{\sigma \in S_{n}} C_{T C}\left(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)}\right)$. Now define

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S}=\bigwedge\left\{\delta: C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)\right\}
$$

2. From the definitions, it follows that

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{T C} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}
$$

3. Demonstrate the commutator nesting property for the hyper commutator:

$$
\left[\left[\theta_{0}, \ldots, \theta_{i-1}\right]_{H}, \theta_{i}, \ldots, \theta_{n-1}\right]_{H} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}
$$

Possible Approach for Taylor Varieties

- Strategy:

1. Define the symmetric commutator: Define
$C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)=\bigwedge_{\sigma \in S_{n}} C_{T C}\left(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)}\right)$. Now define

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S}=\bigwedge\left\{\delta: C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)\right\}
$$

2. From the definitions, it follows that

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{T C} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}
$$

3. Demonstrate the commutator nesting property for the hyper commutator:

$$
\left[\left[\theta_{0}, \ldots, \theta_{i-1}\right]_{H}, \theta_{i}, \ldots, \theta_{n-1}\right]_{H} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}
$$

4. Show that $\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S}=\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}$ in a Taylor variety.

Possible Approach for Taylor Varieties

- Strategy:

1. Define the symmetric commutator: Define
$C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)=\bigwedge_{\sigma \in S_{n}} C_{T C}\left(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)}\right)$. Now define

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S}=\bigwedge\left\{\delta: C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)\right\}
$$

2. From the definitions, it follows that

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{T C} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}
$$

3. Demonstrate the commutator nesting property for the hyper commutator:

$$
\left[\left[\theta_{0}, \ldots, \theta_{i-1}\right]_{H}, \theta_{i}, \ldots, \theta_{n-1}\right]_{H} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}
$$

4. Show that $\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S}=\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}$ in a Taylor variety.
5. If all of the arguments are equal to θ, then

$$
\begin{aligned}
{\left[[\theta, \ldots, \theta]_{T C}, \theta, \ldots, \theta\right]_{T C} } & =\left[[\theta, \ldots, \theta]_{H}, \theta, \ldots, \theta\right]_{H} \\
\leq[\theta, \ldots, \theta]_{H} & =[\theta, \ldots, \theta]_{T C}
\end{aligned}
$$

Possible Approach for Taylor Varieties

- Strategy:

1. Define the symmetric commutator: Define
$C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)=\bigwedge_{\sigma \in S_{n}} C_{T C}\left(\theta_{\sigma(0)}, \ldots, \theta_{\sigma(n-1)}\right)$. Now define

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S}=\bigwedge\left\{\delta: C_{S}\left(\theta_{0}, \ldots, \theta_{n-1} ; \delta\right)\right\}
$$

2. From the definitions, it follows that

$$
\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{T C} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}
$$

3. Demonstrate the commutator nesting property for the hyper commutator:

$$
\left[\left[\theta_{0}, \ldots, \theta_{i-1}\right]_{H}, \theta_{i}, \ldots, \theta_{n-1}\right]_{H} \leq\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}
$$

4. Show that $\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{S}=\left[\theta_{0}, \ldots, \theta_{n-1}\right]_{H}$ in a Taylor variety.
5. If all of the arguments are equal to θ, then

$$
\begin{aligned}
{\left[[\theta, \ldots, \theta]_{T C}, \theta, \ldots, \theta\right]_{T C} } & =\left[[\theta, \ldots, \theta]_{H}, \theta, \ldots, \theta\right]_{H} \\
\leq[\theta, \ldots, \theta]_{H} & =[\theta, \ldots, \theta]_{T C}
\end{aligned}
$$

Some Observations and Questions

Some Observations and Questions

- The so-called linear commutator may be defined with a centrality condition that is quantified over a higher dimensional congruence.

Some Observations and Questions

- The so-called linear commutator may be defined with a centrality condition that is quantified over a higher dimensional congruence. Let \mathbb{A} be an algebra and take $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$.

Some Observations and Questions

- The so-called linear commutator may be defined with a centrality condition that is quantified over a higher dimensional congruence. Let \mathbb{A} be an algebra and take $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$. Let

$$
M^{*}(\alpha, \beta)=\left\{\sum n_{i} h_{i}: h_{i} \in M(\alpha, \beta) \text { and } \sum n_{i}=1\right\}
$$

where the sum is taken in the free ternary abelian group generated by the underlying set of \mathbb{A}.

Some Observations and Questions

- The so-called linear commutator may be defined with a centrality condition that is quantified over a higher dimensional congruence. Let \mathbb{A} be an algebra and take $\alpha, \beta \in \operatorname{Con}(\mathbb{A})$. Let

$$
M^{*}(\alpha, \beta)=\left\{\sum n_{i} h_{i}: h_{i} \in M(\alpha, \beta) \text { and } \sum n_{i}=1\right\}
$$

where the sum is taken in the free ternary abelian group generated by the underlying set of \mathbb{A}. Now set

$$
\Delta_{\alpha, \beta}^{L}=\left.M^{*}(\alpha, \beta)\right|_{A^{2^{2}}}
$$

and define $C_{L}(\alpha, \beta ; \delta)$ to be the usual centrality condition quantified over this new set of vertex labeled squares. The linear commutator is now defined in the obvious way.

Some Observations and Questions

Some Observations and Questions

- Kearnes and Szendrei showed that $[\alpha, \beta]_{S}=[\alpha, \beta]_{L}$ in any Taylor variety. Is this true for higher arity also?

Some Observations and Questions

- Kearnes and Szendrei showed that $[\alpha, \beta]_{S}=[\alpha, \beta]_{\mathcal{L}}$ in any Taylor variety. Is this true for higher arity also?
- Can two distinct polynomial clones on a finite set have the same higher dimensional congruences?

