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Lattice Terms

Term

We define lattice terms over a set X , and their associated lengths (or ranks), in
the following way:
Each element of X is a term of length (or rank) 1. Terms of length (or rank) 1
are called variables. If t1, . . . , tn are terms of lengths (or ranks) k1, . . . , kn, then
(t1 ∨ · · · ∨ tn) and (t1 ∧ · · · ∧ tn) are terms with length (or rank) 1 + k1 + · · ·+ kn.

In practice, we usually omit the outermost parentheses when writing down a term.

Complexity of a term

The complexity, or depth, of a term t the depth of its term tree; that is, t has
depth 0 if t ∈ X , and if t = t1 ∨ · · · ∨ tn or t = t1 ∧ · · · ∧ tn, where n > 1, then
the complexity of t is one more than the maximum of the complexities of
t1, . . . , tn. We shall denote the complexity of a term t as c(t).
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Free Lattices

Free lattice

Let F be a lattice and X ⊆ F . We say that F is freely generated by X if X
generates F and every map from X into any lattice L extends to a lattice
homomorphism of F into L.
Such a lattice can be shown to always exist and be unique up to
isomorphism, and so is referred to as the free lattice over X and is denoted
FL(X ).

Elements of FL(X ) as equivalence classes

If w ∈ FL(X ), then w is an equivalence class of terms. Each term of this
class is said to represent w and is called a representative of w .
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Classifying Terms

The Word Problem for Free Lattices

Is there a procedure which determines, for arbitrary lattice terms s and t
with variables from X , if the interpretations of s and t in FL(X ) are equal?

This is equivalent to asking if there is a procedure which determines, for
arbitrary lattice terms s and t with variables from X , if the interpretations
of s and t in L are equal, for any lattice L.
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A Solution to the Word Problem for Free Lattices

Theorem (Whitman)
If s and t are terms with variables from X and x1, . . . , xn ∈ X , then the truth of

sFL(X ) ≤ tFL(X ) (∗)

can be determined by applying the following rules.

1 If s = xi and t = xj , then (∗) holds if and only xi = xj .

2 If s = s1 ∨ · · · ∨ sk is a formal join then (∗) holds if and only if s
FL(X )
i ≤ tFL(X ) holds for

all i .

3 If t = t1 ∧ · · · ∧ tk is a formal meet then (∗) holds if and only if sFL(X ) ≤ t
FL(X )
i holds for

all i .

4 If s = xi and t = t1 ∨ · · · ∨ tk is a formal join, then (∗) holds if and only if xi ≤ t
FL(X )
j for

some j .

5 If s = s1 ∧ · · · ∧ sk is a formal meet and t = xi , then (∗) holds if and only if s
FL(X )
j ≤ xi

for some j .

6 If s = s1 ∧ · · · ∧ sk is a formal meet and t = t1 ∨ · · · ∨ tm is a formal join, then (∗) holds if

and only if s
FL(X )
i ≤ tFL(X ) holds for some i , or sFL(X ) ≤ t

FL(X )
j holds for some j .
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Canonical Form in FL(X )

Theorem
For each w ∈ FL(X ) there is a term of minimal rank representing w , unique up to
commutativity. This term is called the canonical form of w .
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Important Property of Canonical Form in FL(X )

Refinement
Let L be a lattice and let A and B be finite subsets of L. We say that A join
refines B and we write A� B if for each a ∈ A there is a b ∈ B with a ≤ b. The
dual notion is called meet refinement and is denoted A� B.

Nonrefinable join representation

A join representation a = a1 ∨ · · · ∨ an in a lattice is said to be a nonrefinable join
representation if a = b1 ∨ · · · ∨ bm and {b1, . . . , bm} � {a1, . . . , an} imply
{a1, . . . , an} ⊆ {b1, . . . , bm}. Equivalently, a join representation a = a1 ∨ · · · ∨ an
is nonrefinable if it is an antichain and whenever a = b1 ∨ · · · ∨ bm and
{b1, . . . , bm} � {a1, . . . , an}, then {a1, . . . , an} � {b1, . . . , bm}.

Theorem

Let w = w1 ∨ · · · ∨ wn canonically in FL(X ). If also w = u1 ∨ · · · ∨ um, then
{w1, . . . ,wn} � {u1, . . . , um}. Thus, w = w1 ∨ · · · ∨ wn is the unique
nonrefinable join representation of w .
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The Generalized Word Problem for Free Lattices

The statement

The generalized word problem for free lattices asks if there is an algorithm
to determine, for an arbitrary element d ∈ FL(X ) and a finite subset
Y ⊂ FL(X ), if d is in SgFL(X )(Y ), the subalgebra generated by Y .

Theorem (Freese and Nation)

The generalized word problem for free lattices is (uniformly) solvable.
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A Polynomial Time Algorithm

Interlaces

Let L be a lattice generated by X . Let Y be a subset of L and t(X ) be a
lattice term. We say that Y interlaces t iff, for every branch of the term
tree of t, there are nodes t ′ and t ′′, with t ′′ a child of t ′, such that there
exists y ∈ Y between t ′(X ) and t ′′(X ).

Theorem (Guillen)

Let d ∈ FL(X ) and Y be a finite subset of FL(X ). Then d ∈ SgFL(X )(Y )
iff there is a term t(X ) representing d in FL(X ), i.e. d = t(X ), such that
Y interlaces t.
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A Polynomial Time Algorithm (cont.)

The algorithm

Given d ∈ FL(X ) and a finite Y ⊂ FL(X ), we can check if
d ∈ SgFL(X )(Y ):

1 First, test if d ∈ Y . If it is, d ∈ SgFL(X )(Y ) and we are done.

2 At this point, we may assume d /∈ Y . If d ∈ X , the proof of the
previous theorem shows d /∈ SgFL(X )(Y ). Thus, we may assume that
d is either canonically a join or a meet in FL(X ). If d = d1 ∨ · · · ∨ dn
canonically, for each branch of the term tree of d = d1 ∨ · · · ∨ dn, test
if the branch contains nodes d ′ and d ′′ with d ′′ a child of d ′ such that
there exists y ∈ Y between d ′ and d ′′. If this holds for every branch
of the term tree d = d1 ∨ · · · ∨ dn, then d ∈ SgFL(X )(Y ). A similar
test would be applied if d = d1 ∧ · · · ∧ dm canonically.

3 If all of the tests above fail, then d /∈ SgFL(X )(Y ).
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Finitely Presented Lattices

Partially defined lattice

A partially defined lattice is a partially ordered set (P,≤) together with
two partial functions,

∨
and

∧
, from subsets of P into P such that if

p =
∨
S is one of the defined joins, then p is the least upper bound of S

in (P,≤), and dually. We use (P,≤,
∨
,
∧

) to denote this structure.

Given any finite lattice presentation, there is a polynomial time algorithm
to produce a finite partially defined lattice such that the finitely presented
lattices generated by both are isomorphic.

Notation

Thus, when discussing finitely presented lattices, we shall refer to
Free(P,≤,

∨
,
∧

), or simply FP .
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The Word Problem for Finitely Presented Lattices

The statement

Is there a procedure which determines, for arbitrary lattice terms s and t
with variables from P, if the interpretations of s and t in FP are equal?

Ideals and filters in (P ,≤,
∨
,
∧

)

An ideal I in a partially defined lattice (P,≤,
∨
,
∧

) is a subset of P such
that if a ∈ I and b ≤ a then b ∈ I , and if a1, . . . , ak are in I and a =

∨
ai

is a defined join then a ∈ I . A filter in (P,≤,
∨
,
∧

) is defined dually.

Ideals and filters in FP

If w ∈ FP , we define idP(w) = {a ∈ P : a ≤ w} as the ideal of P below
w . The filter of P above w , denoted filP(w), is defined dually.
If w1, . . . ,wk ∈ FP , we define idP(w1, . . . ,wk) as the ideal of P generated
by idP(w1) ∪ · · · ∪ idP(wk). The filter filP(w1, . . . ,wk) is defined dually.
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A Solution to the Word Problem for Finitely Presented
Lattices

Theorem (Dean)

Let s and t be terms with variables in P. Then s ≤ t holds in FP if and only if one of
the following holds:

(i) s ∈ P and t ∈ P and s ≤ t in (P,≤);

(ii) s = s1 ∨ · · · ∨ sk and ∀ i si ≤ t;

(iii) t = t1 ∧ · · · ∧ tk and ∀ j s ≤ tj ;

(iv) s ∈ P and t = t1 ∨ · · · ∨ tk and s ∈ idP(t1, . . . , tk);

(v) s = s1 ∧ · · · ∧ sk and t ∈ P and t ∈ filP(s1, . . . , sk);

(vi) s = s1 ∧ · · · ∧ sk and t = t1 ∨ · · · ∨ tm and ∃ i si ≤ t or ∃ j s ≤ tj or
∃ a ∈ P s ≤ a ≤ t.

Lemma
If x ∈ P and x ≤ t1 ∨ · · · ∨ tn in FP then there is a set Y ⊆ P such that
Y � {t1, . . . , tn} and x ≤

∨
Y in FP .
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Canonical Form in FP

Adequate term

Let (P,≤,
∨
,
∧

) be a finite partially defined lattice. A term t with
variables from P is called adequate if it is an element of P, or if
t = t1 ∨ · · · ∨ tn is a formal join, each ti is adequate, and if p ≤ t for
p ∈ P then p ≤ ti for some i . If t is formally a meet the dual condition
must hold.

Theorem

For each element of FP there is an adequate term of minimal rank
representing it, and this term is unique up to commutativity.

Canonical form

For w ∈ FP , this shortest adequate term representing w , unique up to
commutativity, is called the canonical form of w .
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Nonrefinable Join Representations in FP

Canonical join and meet representation
We define the canonical join representation of w ∈ FP to be w1 ∨ · · · ∨ wm if the canonical form
of w is t1 ∨ · · · ∨ tm and the interpretation of ti in FP is wi . It is useful to separate out the
elements of P in such a representation. Thus let

w = w1 ∨ · · · ∨ wn ∨ x1 ∨ · · · ∨ xk =
∨∧

wij ∨
∨

xi

be the canonical join representation of w where xi ∈ P, i = 1, . . . , k, and the canonical meet
representation of wi is wi =

∧
wij .

Theorem
Let the canonical join representation for w be as above. Every join representation of w can be
refined to a nonrefinable join representation of w . If w = v1 ∨ · · · ∨ vm in FP then there exist
y1, . . . , yr ∈ P such that

w = w1 ∨ · · · ∨ wn ∨ y1 ∨ · · · ∨ yr

and
{w1, . . . ,wn, y1, . . . , yr} � {v1, . . . , vm}.

Every nonrefinable join representation of w contains {w1, . . . ,wn} and also contains every xi
which is join irreducible.
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and
{w1, . . . ,wn, y1, . . . , yr} � {v1, . . . , vm}.

Every nonrefinable join representation of w contains {w1, . . . ,wn} and also contains every xi
which is join irreducible.
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Some nice consequences

Corollary

If w = w1 ∨ · · · ∨ wn ∨ x1 ∨ · · · ∨ xk is the canonical join representation of
w ∈ FP where xi ∈ P, then every nonrefinable join representation of w has
the form {w1, . . . ,wn, y1, . . . , yr} for some y1, . . . , yr in P.

Corollary

Every nonrefinable join representation of w ∈ FP refines the canonical join
representation of w .
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Why can’t we use the same polynomial time algorithm for
FL(X ) and FP?

One issue
In FL(X ), a generator x ∈ X is both join and meet irreducible. However, a generator
p ∈ P could either be a defined join or defined meet in (P,≤,

∨
,
∧

). So, we may need to
check defined join representations or defined meet representations of a generator p ∈ P.

Example

Let P = {a, b, c, d} with order given in the figure below and the single defined join
d = a + b and the single defined meet b = cd .
Take Y = {a, c}.

o
a

o
d = a + b

o
b = cd

o
c

Alejandro Guillen (UH Mānoa) Finitely Presented Lattices 05/18/2018 17 / 22



Why can’t we use the same polynomial time algorithm for
FL(X ) and FP?

One issue
In FL(X ), a generator x ∈ X is both join and meet irreducible. However, a generator
p ∈ P could either be a defined join or defined meet in (P,≤,

∨
,
∧

). So, we may need to
check defined join representations or defined meet representations of a generator p ∈ P.

Example

Let P = {a, b, c, d} with order given in the figure below and the single defined join
d = a + b and the single defined meet b = cd .
Take Y = {a, c}.

o
a

o
d = a + b

o
b = cd

o
c
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Also, there could be too many join or meet representations
to search through

Let P, with the obvious order and no defined meets, be given below.
For each p ∈ P, except for the minimal elements of P, there are three
elements directly below it in P; call them q, r , and s. P has defined joins
p = q + r = q + s = r + s.

o
d

o o o

o o o o o o o o o

o o o o o o o o o

...
...

...

. . . . . .
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What can be salvaged for FP?

Interval

If a ≤ b in a lattice L, then we let b/a denote the interval
{x ∈ L : a ≤ x ≤ b}.

Theorem (Guillen)

Let P be finite, Y ⊆ FP , d ∈ SgFP
(Y )− Y , and let

d = w1 ∨ . . . ∨ wn ∨ x1 ∨ . . . ∨ xk be the canonical join representation of
d ∈ FP . Then d/wi ∩ SgFP

(Y ) 6= ∅ for 1 ≤ i ≤ n.
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Looking instead for a syntactic algorithm for FP

Lemma (Guillen)

Let d = d1 ∨ · · · ∨ dn ∈ FP be a nonrefinable join representation and, for some di ,
there exists p ∈ P such that di ≤ p ≤ d . Then di ∈ P.

Theorem (Guillen)

Let d ∈ FP and Y be a finite subset of FP . Then d ∈ SgFP
(Y ) iff either d ∈ Y ,

there exists a nonrefinable join representation of d , call it {d1, . . . , dn}, such that,
for each di , either

(a) d/di ∩ Y 6= ∅,

(b) di ∈ SgFP
(Y ), or

(c) di ∈ P and there exists p ∈ P such that di ≤ p ≤ d and p/di ∩ SgFP
(Y ) 6= ∅,

or there exists a non-upper refinable meet representation of d such that the duals
of (a), (b), and (c) hold for the elements of this non-upper refinable
representation.
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A syntactic algorithm for FP

Suppose there is an oracle that can decide, for all p, q ∈ P with p ≤ q if
there exists f ∈ SgFP

(Y ) such that p ≤ f ≤ q. Given d ∈ FP and a finite
Y ⊆ FP , we can check if d ∈ SgFP

(Y ):

1 First, test if d ∈ Y .
2 If d /∈ Y , then d is either a join or a meet in FP .

(a) If d is a join, for each nonrefinable join representation {d1, . . . , dn} of
d , and for each joinand di , test if one of the following holds for di :

(i) d/di ∩ Y 6= ∅.
(ii) di ∈ SgFP

(Y ). Note that this step is a reduction since c(di ) < c(d).
(iii) di ∈ P and there exists p ∈ P such that di ≤ p ≤ d and

p/di ∩ SgFP
(Y ) 6= ∅. Note that if in fact we find that di ∈ P, for each

p ∈ d/di we use our oracle to test if there exists f ∈ SgFP
(Y ) such that

di ≤ f ≤ p.

If we are able to find a nonrefinable join representation for d such that
one of the above holds for each of the joinands, then d ∈ SgFP

(Y ).
(b) If d is a meet, a similar test would be applied.

3 If all of the tests above fail, then d /∈ SgFP
(Y ).
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Fin

Thank you
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