On the Generalized Word Problem for Finitely Presented Lattices

Alejandro Guillen

05/18/2018

Lattice Terms

Term

We define lattice terms over a set X, and their associated lengths (or ranks), in the following way:
Each element of X is a term of length (or rank) 1 . Terms of length (or rank) 1 are called variables. If t_{1}, \ldots, t_{n} are terms of lengths (or ranks) k_{1}, \ldots, k_{n}, then $\left(t_{1} \vee \cdots \vee t_{n}\right)$ and ($t_{1} \wedge \cdots \wedge t_{n}$) are terms with length (or rank) $1+k_{1}+\cdots+k_{n}$.

Lattice Terms

Term

We define lattice terms over a set X, and their associated lengths (or ranks), in the following way:
Each element of X is a term of length (or rank) 1. Terms of length (or rank) 1 are called variables. If t_{1}, \ldots, t_{n} are terms of lengths (or ranks) k_{1}, \ldots, k_{n}, then $\left(t_{1} \vee \cdots \vee t_{n}\right)$ and $\left(t_{1} \wedge \cdots \wedge t_{n}\right)$ are terms with length (or rank) $1+k_{1}+\cdots+k_{n}$.

In practice, we usually omit the outermost parentheses when writing down a term.

Lattice Terms

Term

We define lattice terms over a set X, and their associated lengths (or ranks), in the following way:
Each element of X is a term of length (or rank) 1. Terms of length (or rank) 1 are called variables. If t_{1}, \ldots, t_{n} are terms of lengths (or ranks) k_{1}, \ldots, k_{n}, then $\left(t_{1} \vee \cdots \vee t_{n}\right)$ and $\left(t_{1} \wedge \cdots \wedge t_{n}\right)$ are terms with length (or rank) $1+k_{1}+\cdots+k_{n}$.

In practice, we usually omit the outermost parentheses when writing down a term.

Complexity of a term

The complexity, or depth, of a term t the depth of its term tree; that is, t has depth 0 if $t \in X$, and if $t=t_{1} \vee \cdots \vee t_{n}$ or $t=t_{1} \wedge \cdots \wedge t_{n}$, where $n>1$, then the complexity of t is one more than the maximum of the complexities of t_{1}, \ldots, t_{n}. We shall denote the complexity of a term t as $c(t)$.

Free Lattices

Free lattice

Let \mathbf{F} be a lattice and $X \subseteq F$. We say that \mathbf{F} is freely generated by X if X generates \mathbf{F} and every map from X into any lattice \mathbf{L} extends to a lattice homomorphism of \mathbf{F} into \mathbf{L}.
Such a lattice can be shown to always exist and be unique up to isomorphism, and so is referred to as the free lattice over X and is denoted FL (X).

Free Lattices

Free lattice

Let \mathbf{F} be a lattice and $X \subseteq F$. We say that \mathbf{F} is freely generated by X if X generates \mathbf{F} and every map from X into any lattice \mathbf{L} extends to a lattice homomorphism of \mathbf{F} into \mathbf{L}.
Such a lattice can be shown to always exist and be unique up to isomorphism, and so is referred to as the free lattice over X and is denoted FL (X).

Elements of $\operatorname{FL}(X)$ as equivalence classes

If $w \in \mathbf{F L}(X)$, then w is an equivalence class of terms. Each term of this class is said to represent w and is called a representative of w.

Classifying Terms

The Word Problem for Free Lattices

Is there a procedure which determines, for arbitrary lattice terms s and t with variables from X, if the interpretations of s and t in $\operatorname{FL}(X)$ are equal?

Classifying Terms

The Word Problem for Free Lattices

Is there a procedure which determines, for arbitrary lattice terms s and t with variables from X, if the interpretations of s and t in $\operatorname{FL}(X)$ are equal?

This is equivalent to asking if there is a procedure which determines, for arbitrary lattice terms s and t with variables from X, if the interpretations of s and t in \mathbf{L} are equal, for any lattice \mathbf{L}.

A Solution to the Word Problem for Free Lattices

Theorem (Whitman)

If s and t are terms with variables from X and $x_{1}, \ldots, x_{n} \in X$, then the truth of

$$
\begin{equation*}
s^{\mathrm{FL}(X)} \leq t^{\mathrm{FL}(X)} \tag{*}
\end{equation*}
$$

can be determined by applying the following rules.
(1) If $s=x_{i}$ and $t=x_{j}$, then (*) holds if and only $x_{i}=x_{j}$.
(2) If $s=s_{1} \vee \cdots \vee s_{k}$ is a formal join then (*) holds if and only if $s_{i}{ }^{\mathrm{FL}(X)} \leq t^{\mathrm{FL}(X)}$ holds for all i.
(3) If $t=t_{1} \wedge \cdots \wedge t_{k}$ is a formal meet then (*) holds if and only if $s^{\mathrm{FL}(X)} \leq t_{i}^{\mathrm{FL}(X)}$ holds for all i.
(4) If $s=x_{i}$ and $t=t_{1} \vee \cdots \vee t_{k}$ is a formal join, then (*) holds if and only if $x_{i} \leq t_{j}^{\mathrm{FL}(X)}$ for some j.
(5) If $s=s_{1} \wedge \cdots \wedge s_{k}$ is a formal meet and $t=x_{i}$, then (*) holds if and only if $s_{j}^{\mathrm{FL}(X)} \leq x_{i}$ for some j.
(6) If $s=s_{1} \wedge \cdots \wedge s_{k}$ is a formal meet and $t=t_{1} \vee \cdots \vee t_{m}$ is a formal join, then (*) holds if and only if $s_{i}^{\mathrm{FL}(X)} \leq t^{\mathrm{FL}(X)}$ holds for some i, or $s^{\mathrm{FL}(X)} \leq t_{j}^{\mathrm{FL}(X)}$ holds for some j.

Canonical Form in FL (X)

Theorem

For each $w \in \mathrm{FL}(X)$ there is a term of minimal rank representing w, unique up to commutativity. This term is called the canonical form of w.

Important Property of Canonical Form in FL(X)

Refinement

Let \mathbf{L} be a lattice and let A and B be finite subsets of L. We say that A join refines B and we write $A \ll B$ if for each $a \in A$ there is a $b \in B$ with $a \leq b$. The dual notion is called meet refinement and is denoted $A \gg B$.

Important Property of Canonical Form in FL (X)

Refinement

Let \mathbf{L} be a lattice and let A and B be finite subsets of L. We say that A join refines B and we write $A \ll B$ if for each $a \in A$ there is a $b \in B$ with $a \leq b$. The dual notion is called meet refinement and is denoted $A \gg B$.

Nonrefinable join representation

A join representation $a=a_{1} \vee \cdots \vee a_{n}$ in a lattice is said to be a nonrefinable join representation if $a=b_{1} \vee \cdots \vee b_{m}$ and $\left\{b_{1}, \ldots, b_{m}\right\} \ll\left\{a_{1}, \ldots, a_{n}\right\}$ imply $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq\left\{b_{1}, \ldots, b_{m}\right\}$. Equivalently, a join representation $a=a_{1} \vee \cdots \vee a_{n}$ is nonrefinable if it is an antichain and whenever $a=b_{1} \vee \cdots \vee b_{m}$ and $\left\{b_{1}, \ldots, b_{m}\right\} \ll\left\{a_{1}, \ldots, a_{n}\right\}$, then $\left\{a_{1}, \ldots, a_{n}\right\} \ll\left\{b_{1}, \ldots, b_{m}\right\}$.

Important Property of Canonical Form in FL(X)

Refinement

Let \mathbf{L} be a lattice and let A and B be finite subsets of L. We say that A join refines B and we write $A \ll B$ if for each $a \in A$ there is a $b \in B$ with $a \leq b$. The dual notion is called meet refinement and is denoted $A \gg B$.

Nonrefinable join representation

A join representation $a=a_{1} \vee \cdots \vee a_{n}$ in a lattice is said to be a nonrefinable join representation if $a=b_{1} \vee \cdots \vee b_{m}$ and $\left\{b_{1}, \ldots, b_{m}\right\} \ll\left\{a_{1}, \ldots, a_{n}\right\}$ imply $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq\left\{b_{1}, \ldots, b_{m}\right\}$. Equivalently, a join representation $a=a_{1} \vee \cdots \vee a_{n}$ is nonrefinable if it is an antichain and whenever $a=b_{1} \vee \cdots \vee b_{m}$ and $\left\{b_{1}, \ldots, b_{m}\right\} \ll\left\{a_{1}, \ldots, a_{n}\right\}$, then $\left\{a_{1}, \ldots, a_{n}\right\} \ll\left\{b_{1}, \ldots, b_{m}\right\}$.

Theorem

Let $w=w_{1} \vee \cdots \vee w_{n}$ canonically in $\mathrm{FL}(X)$. If also $w=u_{1} \vee \cdots \vee u_{m}$, then $\left\{w_{1}, \ldots, w_{n}\right\} \ll\left\{u_{1}, \ldots, u_{m}\right\}$. Thus, $w=w_{1} \vee \cdots \vee w_{n}$ is the unique nonrefinable join representation of w.

The Generalized Word Problem for Free Lattices

The statement

The generalized word problem for free lattices asks if there is an algorithm to determine, for an arbitrary element $d \in \mathrm{FL}(X)$ and a finite subset $Y \subset \mathrm{FL}(X)$, if d is in $\operatorname{Sg}_{\mathrm{FL}(X)}(Y)$, the subalgebra generated by Y.

The Generalized Word Problem for Free Lattices

The statement

The generalized word problem for free lattices asks if there is an algorithm to determine, for an arbitrary element $d \in \mathrm{FL}(X)$ and a finite subset $Y \subset \mathrm{FL}(X)$, if d is in $\operatorname{Sg}_{\mathrm{FL}(X)}(Y)$, the subalgebra generated by Y.

Theorem (Freese and Nation)

The generalized word problem for free lattices is (uniformly) solvable.

A Polynomial Time Algorithm

Interlaces

Let \mathbf{L} be a lattice generated by X. Let Y be a subset of L and $t(X)$ be a lattice term. We say that Y interlaces t iff, for every branch of the term tree of t, there are nodes t^{\prime} and $t^{\prime \prime}$, with $t^{\prime \prime}$ a child of t^{\prime}, such that there exists $y \in Y$ between $t^{\prime}(X)$ and $t^{\prime \prime}(X)$.

A Polynomial Time Algorithm

Interlaces

Let \mathbf{L} be a lattice generated by X. Let Y be a subset of L and $t(X)$ be a lattice term. We say that Y interlaces t iff, for every branch of the term tree of t, there are nodes t^{\prime} and $t^{\prime \prime}$, with $t^{\prime \prime}$ a child of t^{\prime}, such that there exists $y \in Y$ between $t^{\prime}(X)$ and $t^{\prime \prime}(X)$.

Theorem (Guillen)

Let $d \in \mathrm{FL}(X)$ and Y be a finite subset of $\mathrm{FL}(X)$. Then $d \in \operatorname{Sg}_{\mathrm{FL}(X)}(Y)$ iff there is a term $t(X)$ representing d in $\mathrm{FL}(X)$, i.e. $d=t(X)$, such that Y interlaces t.

A Polynomial Time Algorithm (cont.)

The algorithm

Given $d \in \mathrm{FL}(X)$ and a finite $Y \subset \mathrm{FL}(X)$, we can check if $d \in \operatorname{Sg}_{\mathrm{FL}(X)}(Y)$:
(1) First, test if $d \in Y$. If it is, $d \in \operatorname{Sg}_{\mathrm{FL}(X)}(Y)$ and we are done.
(2) At this point, we may assume $d \notin Y$. If $d \in X$, the proof of the previous theorem shows $d \notin \operatorname{Sg}_{\mathrm{FL}(X)}(Y)$. Thus, we may assume that d is either canonically a join or a meet in $\mathrm{FL}(X)$. If $d=d_{1} \vee \cdots \vee d_{n}$ canonically, for each branch of the term tree of $d=d_{1} \vee \cdots \vee d_{n}$, test if the branch contains nodes d^{\prime} and $d^{\prime \prime}$ with $d^{\prime \prime}$ a child of d^{\prime} such that there exists $y \in Y$ between d^{\prime} and $d^{\prime \prime}$. If this holds for every branch of the term tree $d=d_{1} \vee \cdots \vee d_{n}$, then $d \in \operatorname{Sg}_{\mathrm{FL}(X)}(Y)$. A similar test would be applied if $d=d_{1} \wedge \cdots \wedge d_{m}$ canonically.
(3) If all of the tests above fail, then $d \notin \operatorname{Sg}_{\mathrm{FL}(X)}(Y)$.

Finitely Presented Lattices

Partially defined lattice

A partially defined lattice is a partially ordered set (P, \leq) together with two partial functions, V and \bigwedge, from subsets of P into P such that if $p=\bigvee S$ is one of the defined joins, then p is the least upper bound of S in (P, \leq), and dually. We use $(P, \leq, \bigvee, \bigwedge)$ to denote this structure.

Finitely Presented Lattices

Partially defined lattice

A partially defined lattice is a partially ordered set (P, \leq) together with two partial functions, V and \bigwedge, from subsets of P into P such that if $p=\bigvee S$ is one of the defined joins, then p is the least upper bound of S in (P, \leq), and dually. We use $(P, \leq, \bigvee, \bigwedge)$ to denote this structure.

Given any finite lattice presentation, there is a polynomial time algorithm to produce a finite partially defined lattice such that the finitely presented lattices generated by both are isomorphic.

Finitely Presented Lattices

Partially defined lattice

A partially defined lattice is a partially ordered set (P, \leq) together with two partial functions, V and \bigwedge, from subsets of P into P such that if $p=\bigvee S$ is one of the defined joins, then p is the least upper bound of S in (P, \leq), and dually. We use $(P, \leq, \bigvee, \bigwedge)$ to denote this structure.

Given any finite lattice presentation, there is a polynomial time algorithm to produce a finite partially defined lattice such that the finitely presented lattices generated by both are isomorphic.

Notation

Thus, when discussing finitely presented lattices, we shall refer to Free $(P, \leq, \bigvee, \bigwedge)$, or simply F_{P}.

The Word Problem for Finitely Presented Lattices

The statement

Is there a procedure which determines, for arbitrary lattice terms s and t with variables from P, if the interpretations of s and t in F_{P} are equal?

The Word Problem for Finitely Presented Lattices

The statement

Is there a procedure which determines, for arbitrary lattice terms s and t with variables from P, if the interpretations of s and t in F_{P} are equal?

Ideals and filters in $(P, \leq, \bigvee, \bigwedge)$

An ideal I in a partially defined lattice $(P, \leq, \bigvee, \bigwedge)$ is a subset of P such that if $a \in I$ and $b \leq a$ then $b \in I$, and if a_{1}, \ldots, a_{k} are in I and $a=\bigvee a_{i}$ is a defined join then $a \in I$. A filter in ($P, \leq, \bigvee, \bigwedge$) is defined dually.

The Word Problem for Finitely Presented Lattices

The statement

Is there a procedure which determines, for arbitrary lattice terms s and t with variables from P, if the interpretations of s and t in F_{P} are equal?

Ideals and filters in $(P, \leq, \bigvee, \bigwedge)$

An ideal l in a partially defined lattice $(P, \leq, \bigvee, \bigwedge)$ is a subset of P such that if $a \in I$ and $b \leq a$ then $b \in I$, and if a_{1}, \ldots, a_{k} are in I and $a=\bigvee a_{i}$ is a defined join then $a \in I$. A filter in ($P, \leq, \bigvee, \bigwedge$) is defined dually.

Ideals and filters in F_{P}

If $w \in F_{P}$, we define $\operatorname{id}_{P}(w)=\{a \in P: a \leq w\}$ as the ideal of P below w. The filter of P above w, denoted fil $P(w)$, is defined dually. If $w_{1}, \ldots, w_{k} \in F_{P}$, we define $\operatorname{id}_{P}\left(w_{1}, \ldots, w_{k}\right)$ as the ideal of P generated by $\operatorname{id}_{P}\left(w_{1}\right) \cup \cdots \cup \operatorname{id}_{P}\left(w_{k}\right)$. The filter fil $l_{P}\left(w_{1}, \ldots, w_{k}\right)$ is defined dually.

A Solution to the Word Problem for Finitely Presented Lattices

Theorem (Dean)

Let s and t be terms with variables in P. Then $s \leq t$ holds in F_{P} if and only if one of the following holds:
(i) $s \in P$ and $t \in P$ and $s \leq t$ in (P, \leq);
(ii) $s=s_{1} \vee \cdots \vee s_{k}$ and $\forall i s_{i} \leq t$;
(iii) $t=t_{1} \wedge \cdots \wedge t_{k}$ and $\forall j s \leq t_{j}$;
(iv) $s \in P$ and $t=t_{1} \vee \cdots \vee t_{k}$ and $s \in \operatorname{id}_{P}\left(t_{1}, \ldots, t_{k}\right)$;
(v) $s=s_{1} \wedge \cdots \wedge s_{k}$ and $t \in P$ and $t \in \operatorname{fil}_{P}\left(s_{1}, \ldots, s_{k}\right)$;
(vi) $s=s_{1} \wedge \cdots \wedge s_{k}$ and $t=t_{1} \vee \cdots \vee t_{m}$ and $\exists i s_{i} \leq t$ or $\exists j s \leq t_{j}$ or $\exists a \in P s \leq a \leq t$.

A Solution to the Word Problem for Finitely Presented Lattices

Theorem (Dean)

Let s and t be terms with variables in P. Then $s \leq t$ holds in F_{P} if and only if one of the following holds:
(i) $s \in P$ and $t \in P$ and $s \leq t$ in (P, \leq);
(ii) $s=s_{1} \vee \cdots \vee s_{k}$ and $\forall i s_{i} \leq t$;
(iii) $t=t_{1} \wedge \cdots \wedge t_{k}$ and $\forall j s \leq t_{j}$;
(iv) $s \in P$ and $t=t_{1} \vee \cdots \vee t_{k}$ and $s \in \operatorname{id} P\left(t_{1}, \ldots, t_{k}\right)$;
(v) $s=s_{1} \wedge \cdots \wedge s_{k}$ and $t \in P$ and $t \in \operatorname{fil}_{P}\left(s_{1}, \ldots, s_{k}\right)$;
$\begin{aligned} \text { (vi) } & s=s_{1} \wedge \cdots \wedge s_{k} \text { and } t=t_{1} \vee \cdots \vee t_{m} \text { and } \exists i s_{i} \leq t \text { or } \exists j s \leq t_{j} \text { or } \\ & \exists a \in P s \leq a \leq t .\end{aligned}$

Lemma

If $x \in P$ and $x \leq t_{1} \vee \cdots \vee t_{n}$ in F_{P} then there is a set $Y \subseteq P$ such that $Y \ll\left\{t_{1}, \ldots, t_{n}\right\}$ and $x \leq \bigvee Y$ in F_{P}.

Canonical Form in F_{P}

Adequate term

Let $(P, \leq, \bigvee, \bigwedge)$ be a finite partially defined lattice. A term t with variables from P is called adequate if it is an element of P, or if $t=t_{1} \vee \cdots \vee t_{n}$ is a formal join, each t_{i} is adequate, and if $p \leq t$ for $p \in P$ then $p \leq t_{i}$ for some i. If t is formally a meet the dual condition must hold.

Canonical Form in F_{P}

Adequate term

Let $(P, \leq, \bigvee, \bigwedge)$ be a finite partially defined lattice. A term t with variables from P is called adequate if it is an element of P, or if $t=t_{1} \vee \cdots \vee t_{n}$ is a formal join, each t_{i} is adequate, and if $p \leq t$ for $p \in P$ then $p \leq t_{i}$ for some i. If t is formally a meet the dual condition must hold.

Theorem

For each element of F_{P} there is an adequate term of minimal rank representing it, and this term is unique up to commutativity.

Canonical Form in F_{P}

Adequate term

Let $(P, \leq, \bigvee, \bigwedge)$ be a finite partially defined lattice. A term t with variables from P is called adequate if it is an element of P, or if $t=t_{1} \vee \cdots \vee t_{n}$ is a formal join, each t_{i} is adequate, and if $p \leq t$ for $p \in P$ then $p \leq t_{i}$ for some i. If t is formally a meet the dual condition must hold.

Theorem

For each element of F_{P} there is an adequate term of minimal rank representing it, and this term is unique up to commutativity.

Canonical form

For $w \in F_{P}$, this shortest adequate term representing w, unique up to commutativity, is called the canonical form of w.

Nonrefinable Join Representations in F_{P}

Canonical join and meet representation

We define the canonical join representation of $w \in F_{P}$ to be $w_{1} \vee \cdots \vee w_{m}$ if the canonical form of w is $t_{1} \vee \cdots \vee t_{m}$ and the interpretation of t_{i} in F_{P} is w_{i}. It is useful to separate out the elements of P in such a representation. Thus let

$$
w=w_{1} \vee \cdots \vee w_{n} \vee x_{1} \vee \cdots \vee x_{k}=\bigvee \bigwedge w_{i j} \vee \bigvee x_{i}
$$

be the canonical join representation of w where $x_{i} \in P, i=1, \ldots, k$, and the canonical meet representation of w_{i} is $w_{i}=\Lambda w_{i j}$.

Nonrefinable Join Representations in F_{P}

Canonical join and meet representation

We define the canonical join representation of $w \in F_{P}$ to be $w_{1} \vee \cdots \vee w_{m}$ if the canonical form of w is $t_{1} \vee \cdots \vee t_{m}$ and the interpretation of t_{i} in F_{P} is w_{i}. It is useful to separate out the elements of P in such a representation. Thus let

$$
w=w_{1} \vee \cdots \vee w_{n} \vee x_{1} \vee \cdots \vee x_{k}=\bigvee \bigwedge w_{i j} \vee \bigvee x_{i}
$$

be the canonical join representation of w where $x_{i} \in P, i=1, \ldots, k$, and the canonical meet representation of w_{i} is $w_{i}=\Lambda w_{i j}$.

Theorem

Let the canonical join representation for w be as above. Every join representation of w can be refined to a nonrefinable join representation of w. If $w=v_{1} \vee \cdots \vee v_{m}$ in F_{P} then there exist $y_{1}, \ldots, y_{r} \in P$ such that

$$
w=w_{1} \vee \cdots \vee w_{n} \vee y_{1} \vee \cdots \vee y_{r}
$$

and

$$
\left\{w_{1}, \ldots, w_{n}, y_{1}, \ldots, y_{r}\right\} \ll\left\{v_{1}, \ldots, v_{m}\right\} .
$$

Every nonrefinable join representation of w contains $\left\{w_{1}, \ldots, w_{n}\right\}$ and also contains every x_{i} which is join irreducible.

Some nice consequences

Corollary

If $w=w_{1} \vee \cdots \vee w_{n} \vee x_{1} \vee \cdots \vee x_{k}$ is the canonical join representation of $w \in F_{P}$ where $x_{i} \in P$, then every nonrefinable join representation of w has the form $\left\{w_{1}, \ldots, w_{n}, y_{1}, \ldots, y_{r}\right\}$ for some y_{1}, \ldots, y_{r} in P.

Some nice consequences

Corollary

If $w=w_{1} \vee \cdots \vee w_{n} \vee x_{1} \vee \cdots \vee x_{k}$ is the canonical join representation of $w \in F_{P}$ where $x_{i} \in P$, then every nonrefinable join representation of w has the form $\left\{w_{1}, \ldots, w_{n}, y_{1}, \ldots, y_{r}\right\}$ for some y_{1}, \ldots, y_{r} in P.

Corollary

Every nonrefinable join representation of $w \in F_{P}$ refines the canonical join representation of w.

Why can't we use the same polynomial time algorithm for $F L(X)$ and F_{p} ?

One issue

In $\mathrm{FL}(X)$, a generator $x \in X$ is both join and meet irreducible. However, a generator $p \in P$ could either be a defined join or defined meet in $(P, \leq, \bigvee, \wedge)$. So, we may need to check defined join representations or defined meet representations of a generator $p \in P$.

Why can't we use the same polynomial time algorithm for FL (X) and F_{p} ?

One issue

In $\mathrm{FL}(X)$, a generator $x \in X$ is both join and meet irreducible. However, a generator $p \in P$ could either be a defined join or defined meet in $(P, \leq, \bigvee, \wedge)$. So, we may need to check defined join representations or defined meet representations of a generator $p \in P$.

Example

Let $P=\{a, b, c, d\}$ with order given in the figure below and the single defined join $d=a+b$ and the single defined meet $b=c d$.
Take $Y=\{a, c\}$.

Also, there could be too many join or meet representations

 to search throughLet P, with the obvious order and no defined meets, be given below. For each $p \in P$, except for the minimal elements of P, there are three elements directly below it in P; call them q, r, and $s . P$ has defined joins $p=q+r=q+s=r+s$.

What can be salvaged for F_{p} ?

Interval

If $a \leq b$ in a lattice \mathbf{L}, then we let b / a denote the interval $\{x \in L: a \leq x \leq b\}$.

Theorem (Guillen)

Let P be finite, $Y \subseteq F_{P}, d \in \operatorname{Sg}_{F_{P}}(Y)-Y$, and let $d=w_{1} \vee \ldots \vee w_{n} \vee x_{1} \vee \ldots \vee x_{k}$ be the canonical join representation of $d \in F_{P}$. Then $d / w_{i} \cap \operatorname{Sg}_{F_{P}}(Y) \neq \emptyset$ for $1 \leq i \leq n$.

Looking instead for a syntactic algorithm for F_{P}

Lemma (Guillen)

Let $d=d_{1} \vee \cdots \vee d_{n} \in F_{P}$ be a nonrefinable join representation and, for some d_{i}, there exists $p \in P$ such that $d_{i} \leq p \leq d$. Then $d_{i} \in P$.

Looking instead for a syntactic algorithm for F_{P}

Lemma (Guillen)

Let $d=d_{1} \vee \cdots \vee d_{n} \in F_{P}$ be a nonrefinable join representation and, for some d_{i}, there exists $p \in P$ such that $d_{i} \leq p \leq d$. Then $d_{i} \in P$.

Theorem (Guillen)

Let $d \in F_{P}$ and Y be a finite subset of F_{P}. Then $d \in \operatorname{Sg}_{F_{P}}(Y)$ iff either $d \in Y$, there exists a nonrefinable join representation of d, call it $\left\{d_{1}, \ldots, d_{n}\right\}$, such that, for each d_{i}, either
(a) $d / d_{i} \cap Y \neq \emptyset$,
(b) $d_{i} \in \operatorname{Sg}_{F_{p}}(Y)$, or
(c) $d_{i} \in P$ and there exists $p \in P$ such that $d_{i} \leq p \leq d$ and $p / d_{i} \cap \operatorname{Sg}_{F_{P}}(Y) \neq \emptyset$, or there exists a non-upper refinable meet representation of d such that the duals of (a), (b), and (c) hold for the elements of this non-upper refinable representation.

A syntactic algorithm for F_{P}

Suppose there is an oracle that can decide, for all $p, q \in P$ with $p \leq q$ if there exists $f \in \operatorname{Sg}_{F_{P}}(Y)$ such that $p \leq f \leq q$. Given $d \in F_{P}$ and a finite $Y \subseteq F_{P}$, we can check if $d \in \operatorname{Sg}_{F_{P}}(Y)$:
(1) First, test if $d \in Y$.
(2) If $d \notin Y$, then d is either a join or a meet in F_{P}.
(a) If d is a join, for each nonrefinable join representation $\left\{d_{1}, \ldots, d_{n}\right\}$ of d, and for each joinand d_{i}, test if one of the following holds for d_{i} :
(i) $d / d_{i} \cap Y \neq \emptyset$.
(ii) $d_{i} \in \operatorname{Sg}_{F_{p}}(Y)$. Note that this step is a reduction since $c\left(d_{i}\right)<c(d)$.
(iii) $d_{i} \in P$ and there exists $p \in P$ such that $d_{i} \leq p \leq d$ and
$p / d_{i} \cap \operatorname{Sg}_{F_{\rho}}(Y) \neq \emptyset$. Note that if in fact we find that $d_{i} \in P$, for each
$p \in d / d_{i}$ we use our oracle to test if there exists $f \in \operatorname{Sg}_{F_{p}}(Y)$ such that
$d_{i} \leq f \leq p$.
If we are able to find a nonrefinable join representation for d such that one of the above holds for each of the joinands, then $d \in \operatorname{Sg}_{F_{p}}(Y)$.
(b) If d is a meet, a similar test would be applied.
(3) If all of the tests above fail, then $d \notin \operatorname{Sg}_{F_{P}}(Y)$.

Fin

Thank you

