Random Models for
 Idempotent Linear Maltsev Conditions

Ágnes Szendrei

University of Colorado Boulder
Joint work with C. Bergman

Algebra and Algorithms
University of Hawaii
Honolulu, HI, May 18-20, 2018

Question

Question

Suppose we are given two Maltsev conditions, $\hat{\mathcal{C}}$ and \mathcal{C}; say

Question

Suppose we are given two Maltsev conditions, $\hat{\mathcal{C}}$ and \mathcal{C}; say
$\hat{\mathcal{C}}$ there exists a Maltsev term P;
i.e., a term P satisfying the identities

$$
x \approx P(x, y, y), P(x, x, y) \approx y
$$

\mathcal{C} there exists $\mathrm{H}-\mathrm{M}$ terms for 3-permutability; i.e., terms
P_{1}, P_{2} satisfying the identities

$$
\begin{aligned}
& x \approx P_{1}(x, y, y), P_{2}(x, x, y) \approx y \\
& P_{1}(x, x, y) \approx P_{2}(x, y, y)
\end{aligned}
$$

Question

Suppose we are given two Maltsev conditions, $\hat{\mathcal{C}}$ and \mathcal{C}; say
$\hat{\mathcal{C}}$ there exists a Maltsev term P;
i.e., a term P satisfying the
identities

$$
x \approx P(x, y, y), P(x, x, y) \approx y
$$

\mathcal{C} there exists $\mathrm{H}-\mathrm{M}$ terms for 3-permutability; i.e., terms
P_{1}, P_{2} satisfying the identities

$$
\begin{aligned}
& x \approx P_{1}(x, y, y), P_{2}(x, x, y) \approx y \\
& P_{1}(x, x, y) \approx P_{2}(x, y, y)
\end{aligned}
$$

Known: there exist finite algebras satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails.

Question

Suppose we are given two Maltsev conditions, $\hat{\mathcal{C}}$ and \mathcal{C}; say
$\hat{\mathcal{C}}$ there exists a Maltsev term P;
i.e., a term P satisfying the
identities

$$
x \approx P(x, y, y), P(x, x, y) \approx y
$$

\mathcal{C} there exists $\mathrm{H}-\mathrm{M}$ terms for 3-permutability; i.e., terms
P_{1}, P_{2} satisfying the identities

$$
\begin{align*}
& x \approx P_{1}(x, y, y), P_{2}(x, x, y) \approx y, \\
& P_{1}(x, x, y) \approx P_{2}(x, y, y)
\end{align*}
$$

Known: there exist finite algebras satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails.

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?

Question

Suppose we are given two Maltsev conditions, $\hat{\mathcal{C}}$ and \mathcal{C}; say
$\hat{\mathcal{C}}$ there exists a Maltsev term P; i.e., a term P satisfying the identities

$$
x \approx P(x, y, y), P(x, x, y) \approx y
$$

\mathcal{C} there exists $\mathrm{H}-\mathrm{M}$ terms for 3-permutability; i.e., terms P_{1}, P_{2} satisfying the identities

$$
\begin{aligned}
& x \approx P_{1}(x, y, y), P_{2}(x, x, y) \approx y \\
& P_{1}(x, x, y) \approx P_{2}(x, y, y)
\end{aligned}
$$

$\hat{\mathcal{C}}$ there exists a majority term m; i.e., a term m satisfying the identities

$$
\begin{aligned}
& m(x, x, y) \approx m(x, y, x) \approx \\
& m(y, x, x) \approx x
\end{aligned}
$$

\mathcal{C} there exists a Maltsev term P.

Known: there exist finite algebras satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails.

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?

Strong Idempotent Linear Maltsev Conditions

Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond's.

Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond's. They can be described by pairs $\mathcal{M}=(\mathcal{L}, \Sigma)$ where

Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond's. They can be described by pairs $\mathcal{M}=(\mathcal{L}, \Sigma)$ where

- \mathcal{L} is a finite algebraic language with $\operatorname{arity}(f) \geq 2$ for all $f \in \mathcal{L}$;

Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond's. They can be described by pairs $\mathcal{M}=(\mathcal{L}, \Sigma)$ where

- \mathcal{L} is a finite algebraic language with $\operatorname{arity}(f) \geq 2$ for all $f \in \mathcal{L}$;
- Σ is a finite system of idempotent, linear \mathcal{L}-identities;

Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond's. They can be described by pairs $\mathcal{M}=(\mathcal{L}, \Sigma)$ where

- \mathcal{L} is a finite algebraic language with $\operatorname{arity}(f) \geq 2$ for all $f \in \mathcal{L}$;
- Σ is a finite system of idempotent, linear \mathcal{L}-identities; here
- idempotence: $\Sigma \models f(x, \ldots, x) \approx x$ for all $f \in \mathcal{L}$;

Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond's. They can be described by pairs $\mathcal{M}=(\mathcal{L}, \Sigma)$ where

- \mathcal{L} is a finite algebraic language with $\operatorname{arity}(f) \geq 2$ for all $f \in \mathcal{L}$;
- Σ is a finite system of idempotent, linear \mathcal{L}-identities; here
- idempotence: $\Sigma \models f(x, \ldots, x) \approx x$ for all $f \in \mathcal{L}$;
- linearity: $\sigma \approx \tau \in \Sigma \Rightarrow \sigma, \tau$ are linear \mathcal{L}-terms, i.e., they contain at most one operation symbol, and

Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond's. They can be described by pairs $\mathcal{M}=(\mathcal{L}, \Sigma)$ where

- \mathcal{L} is a finite algebraic language with $\operatorname{arity}(f) \geq 2$ for all $f \in \mathcal{L}$;
- Σ is a finite system of idempotent, linear \mathcal{L}-identities; here
- idempotence: $\Sigma \models f(x, \ldots, x) \approx x$ for all $f \in \mathcal{L}$;
- linearity: $\sigma \approx \tau \in \Sigma \Rightarrow \sigma, \tau$ are linear \mathcal{L}-terms, i.e., they contain at most one operation symbol, and
- Σ is non-degenerate, i.e., $\exists f \in \mathcal{L}$ s.t. $\Sigma \not \vDash f \approx x$ for any variable x; hence, in particular, $\Sigma \not \vDash x \approx y$.

Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond's. They can be described by pairs $\mathcal{M}=(\mathcal{L}, \Sigma)$ where

- \mathcal{L} is a finite algebraic language with $\operatorname{arity}(f) \geq 2$ for all $f \in \mathcal{L}$;
- Σ is a finite system of idempotent, linear \mathcal{L}-identities; here
- idempotence: $\Sigma \models f(x, \ldots, x) \approx x$ for all $f \in \mathcal{L}$;
- linearity: $\sigma \approx \tau \in \Sigma \Rightarrow \sigma, \tau$ are linear \mathcal{L}-terms, i.e., they contain at most one operation symbol, and
- Σ is non-degenerate, i.e., $\exists f \in \mathcal{L}$ s.t. $\Sigma \not \vDash f \approx x$ for any variable x; hence, in particular, $\Sigma \not \vDash x \approx y$.

Example

For $\hat{\mathcal{C}}=\mathcal{C}: \quad \mathcal{M}=(\{P\},\{x \approx P(x, y, y), P(x, x, y) \approx y\})$.

Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond's. They can be described by pairs $\mathcal{M}=(\mathcal{L}, \Sigma)$ where

- \mathcal{L} is a finite algebraic language with $\operatorname{arity}(f) \geq 2$ for all $f \in \mathcal{L}$;
- Σ is a finite system of idempotent, linear \mathcal{L}-identities; here
- idempotence: $\Sigma \models f(x, \ldots, x) \approx x$ for all $f \in \mathcal{L}$;
- linearity: $\sigma \approx \tau \in \Sigma \Rightarrow \sigma, \tau$ are linear \mathcal{L}-terms, i.e., they contain at most one operation symbol, and
- Σ is non-degenerate, i.e., $\exists f \in \mathcal{L}$ s.t. $\Sigma \not \models f \approx x$ for any variable x; hence, in particular, $\Sigma \not \vDash x \approx y$.

Example

For $\hat{\mathcal{C}}=\mathcal{C}: \quad \mathcal{M}=(\{P\},\{x \approx P(x, y, y), P(x, x, y) \approx y\})$.
The Maltsev cond. det'd by $\mathcal{M}=(\mathcal{L}, \Sigma)$ requires (for a variety or algebra):

Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond's. They can be described by pairs $\mathcal{M}=(\mathcal{L}, \Sigma)$ where

- \mathcal{L} is a finite algebraic language with $\operatorname{arity}(f) \geq 2$ for all $f \in \mathcal{L}$;
- Σ is a finite system of idempotent, linear \mathcal{L}-identities; here
- idempotence: $\Sigma \models f(x, \ldots, x) \approx x$ for all $f \in \mathcal{L}$;
- linearity: $\sigma \approx \tau \in \Sigma \Rightarrow \sigma, \tau$ are linear \mathcal{L}-terms, i.e., they contain at most one operation symbol, and
- Σ is non-degenerate, i.e., $\exists f \in \mathcal{L}$ s.t. $\Sigma \not \vDash f \approx x$ for any variable x; hence, in particular, $\Sigma \not \vDash x \approx y$.

Example

For $\hat{\mathcal{C}}=\mathcal{C}: \quad \mathcal{M}=(\{P\},\{x \approx P(x, y, y), P(x, x, y) \approx y\})$.
The Maltsev cond. det'd by $\mathcal{M}=(\mathcal{L}, \Sigma)$ requires (for a variety or algebra):
$\mathcal{C}_{\mathcal{M}}$ For each symbol $f \in \mathcal{L}$ there exists a term f (in the language of the given variety or algebra) such that the identities in Σ hold for these terms (in the given variety or algebra).

Random Algebras

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\}) .
$$

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\})
$$

Example

To choose a random algebra $\mathbf{A}=\langle[4] ; *, \dagger\rangle$ (* binary, \dagger unary), we have to randomly fill out the operation tables for $*$ and \dagger :

$*$	0	1	2	3	\dagger
0					
1					
2					
3					
2	3				

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\})
$$

Example

To choose a random algebra $\mathbf{A}=\langle[4] ; *, \dagger\rangle$ (* binary, \dagger unary), we have to randomly fill out the operation tables for $*$ and \dagger :

$*$	0	1	2	3
0	0			
1				
2				
3				

\dagger	
0	
1	
2	
3	

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\})
$$

Example

To choose a random algebra $\mathbf{A}=\langle[4] ; *, \dagger\rangle$ (* binary, \dagger unary), we have to randomly fill out the operation tables for $*$ and \dagger :

$*$	0	1	2	3
0	0	1		
1				
2				
3				

\dagger	
0	
1	
2	
3	

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\})
$$

Example

To choose a random algebra $\mathbf{A}=\langle[4] ; *, \dagger\rangle$ (* binary, \dagger unary), we have to randomly fill out the operation tables for $*$ and \dagger :

$*$	0	1	2	3
0	0	1	3	
1				
2				
3				

\dagger	
0	
1	
2	
3	

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\})
$$

Example

To choose a random algebra $\mathbf{A}=\langle[4] ; *, \dagger\rangle$ (* binary, \dagger unary), we have to randomly fill out the operation tables for $*$ and \dagger :

$*$	0	1	2	3	
0	0	1	3	1	+
1					0
2					1
3					3

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\})
$$

Example

To choose a random algebra $\mathbf{A}=\langle[4] ; *, \dagger\rangle$ (* binary, \dagger unary), we have to randomly fill out the operation tables for $*$ and \dagger :

$*$	0	1	2	3
0	0	1	3	1
1	3	1	3	0
2	1	1	2	1
3	2	0	1	0

\dagger	
0	
1	
2	
3	

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\})
$$

Example

To choose a random algebra $\mathbf{A}=\langle[4] ; *, \dagger\rangle$ (* binary, \dagger unary), we have to randomly fill out the operation tables for $*$ and \dagger :

$*$	0	1	2	3
0	0	1	3	1
1	3	1	3	0
2	1	1	2	1
3	2	0	1	0

\dagger	
0	3
1	
2	
3	

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\})
$$

Example

To choose a random algebra $\mathbf{A}=\langle[4] ; *, \dagger\rangle$ (* binary, \dagger unary), we have to randomly fill out the operation tables for $*$ and \dagger :

$*$	0	1	2	3
0	0	1	3	1
1	3	1	3	0
2	1	1	2	1
3	2	0	1	0

\dagger	
0	3
1	1
2	
3	

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(1) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\})
$$

Example

To choose a random algebra $\mathbf{A}=\langle[4] ; *, \dagger\rangle$ (* binary, \dagger unary), we have to randomly fill out the operation tables for $*$ and \dagger :

$*$	0	1	2	3
0	0	1	3	1
1	3	1	3	0
2	1	1	2	1
3	2	0	1	0

\dagger	
0	3
1	1
2	0
3	0

Random Algebras

If we want to ask a computer to 'randomly choose' an algebra, we need to specify
(0) the number of elements: n [finite]; and
(2) the language $\mathcal{L}^{\prime}=\left\{F_{1}, \ldots, F_{r}\right\}$ (F_{i} is m_{i}-ary) [also finite].

Therefore, our algebras will have the form

$$
\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle=\left\langle[n] ; F_{1}, \ldots, F_{r}\right\rangle \quad([n]:=\{0,1, \ldots, n-1\})
$$

Example

To choose a random algebra $\mathbf{A}=\langle[4] ; *, \dagger\rangle$ (* binary, \dagger unary), we have to randomly fill out the operation tables for $*$ and \dagger :

$*$	0	1	2	3
0	0	1	3	1
1	3	1	3	0
2	1	1	2	1
3	2	0	1	0

\dagger	
0	3
1	1
2	0
3	0

$\left(4^{\left(4^{2}\right)} \cdot 4^{4} \approx 10^{12}\right.$
possibilities)

Probability

Probability

Given n and \mathcal{L}^{\prime}, it is reasonable to assume:

Probability

Given n and \mathcal{L}^{\prime}, it is reasonable to assume:

- each choice $0, \ldots, n-1$ is equaly likely for every entry of every operation table, and

Probability

Given n and \mathcal{L}^{\prime}, it is reasonable to assume:

- each choice $0, \ldots, n-1$ is equaly likely for every entry of every operation table, and
- the choices for different entries are independent.

Probability

Given n and \mathcal{L}^{\prime}, it is reasonable to assume:

- each choice $0, \ldots, n-1$ is equaly likely for every entry of every operation table, and
- the choices for different entries are independent.

Therefore, all algebras $\left\langle[n] ; \mathcal{L}^{\prime}\right\rangle$ have the same

probability space:

 probability to occur (uniform distribution).

Probability

Given n and \mathcal{L}^{\prime}, it is reasonable to assume:

- each choice $0, \ldots, n-1$ is equaly likely for every entry of every operation table, and
- the choices for different entries are independent.

Therefore, all algebras $\left\langle[n] ; \mathcal{L}^{\prime}\right\rangle$ have the same probability to occur (uniform distribution).

probability space:

Definition

Given a property, P , of algebras, we will say that a random finite \mathcal{L}^{\prime}-algebra has property P with probability p, if

Probability

Given n and \mathcal{L}^{\prime}, it is reasonable to assume:

- each choice $0, \ldots, n-1$ is equaly likely for every entry of every operation table, and
- the choices for different entries are independent.

Therefore, all algebras $\left\langle[n] ; \mathcal{L}^{\prime}\right\rangle$ have the same probability to occur (uniform distribution).

probability space:

 all algebras $\left\langle[n] ; \mathcal{L}^{\prime}\right\rangle$

Definition

Given a property, P , of algebras, we will say that a random finite \mathcal{L}^{\prime}-algebra has property P with probability p, if

$$
p=\lim _{n \rightarrow \infty} \frac{\mid\left\{\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle: \mathbf{A} \text { has property } \mathrm{P}\right\} \mid}{\mid\left\{\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle: \mathbf{A} \text { arbitrary }\right\} \mid}=: \operatorname{Pr}^{\infty}(\mathrm{P}) .
$$

Back to Our Question

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?

Back to Our Question

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?
Precise interpretation:

Back to Our Question

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?
Precise interpretation:

- For every choice of a finite language \mathcal{L}^{\prime} for our random algebra,

Back to Our Question

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?
Precise interpretation:

- For every choice of a finite language \mathcal{L}^{\prime} for our random algebra,
- find

$$
\operatorname{Pr}^{\infty}(\neg \hat{\mathcal{C}} \mid \mathcal{C})
$$

all algebras $\left\langle[n] ; \mathcal{L}^{\prime}\right\rangle$

Back to Our Question

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?
Precise interpretation:

- For every choice of a finite language \mathcal{L}^{\prime} for our random algebra,
- find

$$
\begin{aligned}
& \operatorname{Pr}^{\infty}(\neg \hat{\mathcal{C}} \mid \mathcal{C}) \\
& =\lim _{n \rightarrow \infty} \frac{\mid\left\{\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle: \mathbf{A} \text { satisfies } \mathcal{C} \& \neg \hat{\mathcal{C}}\right\} \mid}{\mid\left\{\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle: \mathbf{A} \text { satisfies } \mathcal{C}\right\} \mid}
\end{aligned}
$$

all algebras $\left\langle[n] ; \mathcal{L}^{\prime}\right\rangle$

Back to Our Question

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?
Precise interpretation:

- For every choice of a finite language \mathcal{L}^{\prime} for our random algebra,
- find

$$
\text { all algebras }\left\langle[n] ; \mathcal{L}^{\prime}\right\rangle
$$

$$
\begin{aligned}
& \operatorname{Pr}^{\infty}(\neg \hat{\mathcal{C}} \mid \mathcal{C}) \\
& =\lim _{n \rightarrow \infty} \frac{\mid\left\{\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle: \mathbf{A} \text { satisfies } \mathcal{C} \& \neg \hat{\mathcal{C}}\right\} \mid}{\mid\left\{\mathbf{A}=\left\langle[n], \mathcal{L}^{\prime}\right\rangle: \mathbf{A} \text { satisfies } \mathcal{C}\right\} \mid} \\
& =\frac{\operatorname{Pr}^{\infty}(\neg \mathcal{C} \& \mathcal{C})}{\operatorname{Pr}^{\infty}(\mathcal{C})} \quad\left(\text { if both exist and } \operatorname{Pr}^{\infty}(\mathcal{C}) \neq 0\right)
\end{aligned}
$$

Applying Murskiǐ's Theorem

Applying Murskiǐ's Theorem

Murskiǐ's Theorem (1975)
 If \mathcal{L}^{\prime} contains a symbol of arity ≥ 2,

Applying Murskiǐ's Theorem

Murskiǐ's Theorem (1975)

If \mathcal{L}^{\prime} contains a symbol of arity ≥ 2, then, with probability 1 , a random finite \mathcal{L}^{\prime}-algebra $\mathbf{A}=\left\langle A ; \mathcal{L}^{\prime}\right\rangle$ is idemprimal, i.e.

Applying Murskiǐ's Theorem

Murskiǐ's Theorem (1975)

If \mathcal{L}^{\prime} contains a symbol of arity ≥ 2, then, with probability 1 , a random finite \mathcal{L}^{\prime}-algebra $\mathbf{A}=\left\langle A ; \mathcal{L}^{\prime}\right\rangle$ is idemprimal, i.e. (ip) every idempotent operation $g: A^{k} \rightarrow A(k \geq 1)$ is a term operation of \mathbf{A}.

Applying Murskiǐ's Theorem

Murskiǐ's Theorem (1975)

If \mathcal{L}^{\prime} contains a symbol of arity ≥ 2, then, with probability 1 , a random finite \mathcal{L}^{\prime}-algebra $\mathbf{A}=\left\langle A ; \mathcal{L}^{\prime}\right\rangle$ is idemprimal, i.e.
(ip) every idempotent operation $g: A^{k} \rightarrow A(k \geq 1)$ is a term operation of \mathbf{A}.

- Hence, if \mathcal{L}^{\prime} contains a symbol of arity ≥ 2, then

$$
\operatorname{Pr}^{\infty}(\mathcal{C} \& \hat{\mathcal{C}})=1, \quad \text { so } \quad \operatorname{Pr}^{\infty}(\neg \hat{\mathcal{C}} \mid \mathcal{C})=\frac{\operatorname{Pr}^{\infty}(\neg \hat{\mathcal{C}} \& \mathcal{C})}{\operatorname{Pr}^{\infty}(\mathcal{C})}=\frac{0}{1}=0 .
$$

Applying Murskiǐ's Theorem

Murskiǐ's Theorem (1975)

If \mathcal{L}^{\prime} contains a symbol of arity ≥ 2, then, with probability 1 , a random finite \mathcal{L}^{\prime}-algebra $\mathbf{A}=\left\langle A ; \mathcal{L}^{\prime}\right\rangle$ is idemprimal, i.e.
(ip) every idempotent operation $g: A^{k} \rightarrow A(k \geq 1)$ is a term operation of \mathbf{A}.

- Hence, if \mathcal{L}^{\prime} contains a symbol of arity ≥ 2, then

$$
\operatorname{Pr}^{\infty}(\mathcal{C} \& \hat{\mathcal{C}})=1, \quad \text { so } \quad \operatorname{Pr}^{\infty}(\neg \hat{\mathcal{C}} \mid \mathcal{C})=\frac{\operatorname{Pr}^{\infty}(\neg \hat{\mathcal{C}} \& \mathcal{C})}{\operatorname{Pr}^{\infty}(\mathcal{C})}=\frac{0}{1}=0 .
$$

- On the other hand, if all symbols in \mathcal{L}^{\prime} have arity 1 , then

$$
\operatorname{Pr}^{\infty}(\neg \hat{\mathcal{C}} \mid \mathcal{C})= \begin{cases}1 & \text { if } \mathcal{C} \text { is trivial (so } \hat{\mathcal{C}} \text { is nontrivial) } \\ \text { undefined } & \text { if } \mathcal{C} \text { is nontrivial. }\end{cases}
$$

Back to Our Question: Another Interpretation

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?

Back to Our Question: Another Interpretation

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?
'Minimalist' interpretation:

Back to Our Question: Another Interpretation

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?
'Minimalist' interpretation:

- Let $\mathcal{C}=\mathcal{C}_{\mathcal{M}}$ with $\mathcal{M}=(\mathcal{L}, \Sigma)$.

Back to Our Question: Another Interpretation

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?
'Minimalist' interpretation:

- Let $\mathcal{C}=\mathcal{C}_{\mathcal{M}}$ with $\mathcal{M}=(\mathcal{L}, \Sigma)$.
- Restrict to random algebras which satisfy $\mathcal{C}_{\mathcal{M}}$ with their basic op's; i.e., restrict to $\underbrace{\text { random } \mathcal{L} \text {-algebras that are models of } \Sigma}$. random models of \mathcal{M}

Back to Our Question: Another Interpretation

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?
'Minimalist' interpretation:

- Let $\mathcal{C}=\mathcal{C}_{\mathcal{M}}$ with $\mathcal{M}=(\mathcal{L}, \Sigma)$.
- Restrict to random algebras which satisfy $\mathcal{C}_{\mathcal{M}}$ with their basic op's; i.e., restrict to random \mathcal{L}-algebras that are models of Σ. random models of \mathcal{M}
all algebras $\langle[n] ; \mathcal{L}\rangle$

those where $\hat{\mathcal{C}}$ fails

Back to Our Question: Another Interpretation

Given: strong idempotent linear Maltsev conditions \mathcal{C} and $\hat{\mathcal{C}}$ such that there exists a finite algebra satisfying \mathcal{C} in which $\hat{\mathcal{C}}$ fails

Question

How likely is it that $\hat{\mathcal{C}}$ fails in a random finite algebra satisfying \mathcal{C} ?
'Minimalist' interpretation:

- Let $\mathcal{C}=\mathcal{C}_{\mathcal{M}}$ with $\mathcal{M}=(\mathcal{L}, \Sigma)$.
- Restrict to random algebras which satisfy $\mathcal{C}_{\mathcal{M}}$ with their basic op's; i.e., restrict to random \mathcal{L}-algebras that are models of Σ. random models of \mathcal{M}

those where $\hat{\mathcal{C}}$ fails

Note: $\operatorname{Pr}^{\infty}($ model of $\mathcal{M})=0$

Back to Our Question: Another Interpretation (Cont'd)

'Minimalist' interpretation:

- Let $\mathcal{C}=\mathcal{C}_{\mathcal{M}}$ with $\mathcal{M}=(\mathcal{L}, \Sigma)$.
- Restrict to random algebras which satisfy $\mathcal{C}_{\mathcal{M}}$ with their basic op's; i.e., restrict to $\underbrace{\text { random } \mathcal{L} \text {-algebras that are models of } \Sigma}$.
random models of \mathcal{M}

Back to Our Question: Another Interpretation (Cont'd)

‘Minimalist' interpretation:

- Let $\mathcal{C}=\mathcal{C}_{\mathcal{M}}$ with $\mathcal{M}=(\mathcal{L}, \Sigma)$.
- Restrict to random algebras which satisfy $\mathcal{C}_{\mathcal{M}}$ with their basic op's; i.e., restrict to $\underbrace{\text { random } \mathcal{L} \text {-algebras that are models of } \Sigma}$. random models of \mathcal{M}
our new probability space:

Back to Our Question: Another Interpretation (Cont'd)

'Minimalist' interpretation:

- Let $\mathcal{C}=\mathcal{C}_{\mathcal{M}}$ with $\mathcal{M}=(\mathcal{L}, \Sigma)$.
- Restrict to random algebras which satisfy $\mathcal{C}_{\mathcal{M}}$ with their basic op's; i.e., restrict to $\underbrace{\text { random } \mathcal{L} \text {-algebras that are models of } \Sigma}$. random models of \mathcal{M}
- Find

$$
\operatorname{Pr}_{\mathcal{M}}^{\infty}(\neg \hat{\mathcal{C}})
$$

our new probability space:

Back to Our Question: Another Interpretation (Cont’d)

'Minimalist' interpretation:

- Let $\mathcal{C}=\mathcal{C}_{\mathcal{M}}$ with $\mathcal{M}=(\mathcal{L}, \Sigma)$.
- Restrict to random algebras which satisfy $\mathcal{C}_{\mathcal{M}}$ with their basic op's; i.e., restrict to $\underbrace{\text { random } \mathcal{L} \text {-algebras that are models of } \Sigma}$. random models of \mathcal{M}
our new probability space:

- Find

$$
\begin{aligned}
& \operatorname{Pr}_{\mathcal{M}}^{\infty}(\neg \hat{\mathcal{C}}) \\
& \quad:=\lim _{n \rightarrow \infty} \frac{\mid\{\mathbf{A}=\langle[n], \mathcal{L}\rangle: \mathbf{A} \text { is a model of } \mathcal{M} \text { where } \hat{\mathcal{C}} \text { fails }\} \mid}{\mid\{\mathbf{A}=\langle[n], \mathcal{L}\rangle: \mathbf{A} \text { is a model of } \mathcal{M}\} \mid}
\end{aligned}
$$

Strategy for Finding These Probabilities

Strategy for Finding These Probabilities

Let us fix $\mathcal{M}=(\mathcal{L}, \Sigma)$.

Strategy for Finding These Probabilities

Let us fix $\mathcal{M}=(\mathcal{L}, \Sigma)$.
To find $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\square)$ for various properties \square, we need to

Strategy for Finding These Probabilities

Let us fix $\mathcal{M}=(\mathcal{L}, \Sigma)$.
To find $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\square)$ for various properties \square, we need to

- understand the models of \mathcal{M} well enough so that we can
- count the models with property \square.

Strategy for Finding These Probabilities

Let us fix $\mathcal{M}=(\mathcal{L}, \Sigma)$.
To find $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\square)$ for various properties \square, we need to

- understand the models of \mathcal{M} well enough so that we can
- count the models with property \square.

For this, we will discuss
(1) how to find all linear identities that are consequences of Σ; equivalently,

Strategy for Finding These Probabilities

Let us fix $\mathcal{M}=(\mathcal{L}, \Sigma)$.
To find $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\square)$ for various properties \square, we need to

- understand the models of \mathcal{M} well enough so that we can
- count the models with property \square.

For this, we will discuss
(1) how to find all linear identities that are consequences of Σ; equivalently, how to find linear \mathcal{L}-terms that are 'essentially different' (modulo Σ);

Strategy for Finding These Probabilities

Let us fix $\mathcal{M}=(\mathcal{L}, \Sigma)$.
To find $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\square)$ for various properties \square, we need to

- understand the models of \mathcal{M} well enough so that we can
- count the models with property \square.

For this, we will discuss
(1) how to find all linear identities that are consequences of Σ; equivalently, how to find linear \mathcal{L}-terms that are 'essentially different' (modulo Σ);
(2) how to use a complete set of 'essentially different' linear \mathcal{L}-terms to construct the operations of all random models of \mathcal{M} from 'small independent pieces'.

Strategy for Finding These Probabilities

Let us fix $\mathcal{M}=(\mathcal{L}, \Sigma)$.
To find $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\square)$ for various properties \square, we need to

- understand the models of \mathcal{M} well enough so that we can
- count the models with property \square.

For this, we will discuss
(1) how to find all linear identities that are consequences of Σ; equivalently, how to find linear \mathcal{L}-terms that are 'essentially different' (modulo Σ);
(2) how to use a complete set of 'essentially different' linear \mathcal{L}-terms to construct the operations of all random models of \mathcal{M} from 'small independent pieces'.
We will apply these observations

Strategy for Finding These Probabilities

Let us fix $\mathcal{M}=(\mathcal{L}, \Sigma)$.
To find $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\square)$ for various properties \square, we need to

- understand the models of \mathcal{M} well enough so that we can
- count the models with property \square.

For this, we will discuss
(1) how to find all linear identities that are consequences of Σ; equivalently, how to find linear \mathcal{L}-terms that are 'essentially different' (modulo Σ);
(2) how to use a complete set of 'essentially different' linear \mathcal{L}-terms to construct the operations of all random models of \mathcal{M} from 'small independent pieces'.
We will apply these observations
(A) to characterize when \mathcal{M} has the property that, with probability 1 , the random models of \mathcal{M} are idemprimal; and

Strategy for Finding These Probabilities

Let us fix $\mathcal{M}=(\mathcal{L}, \Sigma)$.
To find $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\square)$ for various properties \square, we need to

- understand the models of \mathcal{M} well enough so that we can
- count the models with property \square.

For this, we will discuss
(1) how to find all linear identities that are consequences of Σ; equivalently, how to find linear \mathcal{L}-terms that are 'essentially different' (modulo Σ);
(2) how to use a complete set of 'essentially different' linear \mathcal{L}-terms to construct the operations of all random models of \mathcal{M} from 'small independent pieces'.
We will apply these observations
(A) to characterize when \mathcal{M} has the property that, with probability 1 , the random models of \mathcal{M} are idemprimal; and
(B) to discuss some cases when this criterion does not apply.

Linear Consequences of Σ

Linear Consequences of Σ

Definitions

- X is large enough for \mathcal{M} if X contains all variables occurring in Σ, $|X| \geq 2$, and $|X| \geq \operatorname{arity}(f)$ for all $f \in \mathcal{L}$.

Linear Consequences of Σ

Definitions

- X is large enough for \mathcal{M} if X contains all variables occurring in Σ, $|X| \geq 2$, and $|X| \geq \operatorname{arity}(f)$ for all $f \in \mathcal{L}$.
- For X large enough for \mathcal{M}, let ${\underset{\sim}{\mathcal{M}}}_{X}($ or $\underset{\sim}{\mathcal{M}})$ denote the least equivalence relation on the set of linear \mathcal{L}-terms in variables from X which contains Σ and is closed under variable substitution.

Linear Consequences of Σ

Definitions

- X is large enough for \mathcal{M} if X contains all variables occurring in Σ, $|X| \geq 2$, and $|X| \geq \operatorname{arity}(f)$ for all $f \in \mathcal{L}$.
- For X large enough for \mathcal{M}, let ${\underset{\sim}{\mathcal{M}}}_{X}($ or $\underset{\sim}{\mathcal{M}})$ denote the least equivalence relation on the set of linear \mathcal{L}-terms in variables from X which contains Σ and is closed under variable substitution.

Kelly's Completeness Theorem

(Recall: by our assumptions, $\Sigma \not \vDash x \approx y$.)

Linear Consequences of Σ

Definitions

- X is large enough for \mathcal{M} if X contains all variables occurring in Σ, $|X| \geq 2$, and $|X| \geq \operatorname{arity}(f)$ for all $f \in \mathcal{L}$.
- For X large enough for \mathcal{M}, let $\underset{\sim}{\mathcal{M}}{ }_{X}$ (or $\underset{\sim}{\mathcal{M}}$) denote the least equivalence relation on the set of linear \mathcal{L}-terms in variables from X which contains Σ and is closed under variable substitution.

Kelly's Completeness Theorem

(Recall: by our assumptions, $\Sigma \notin x \approx y$.) If X is large enough for \mathcal{M}, then for any linear \mathcal{L}-terms s, t in variables from X,

Linear Consequences of Σ

Definitions

- X is large enough for \mathcal{M} if X contains all variables occurring in Σ, $|X| \geq 2$, and $|X| \geq \operatorname{arity}(f)$ for all $f \in \mathcal{L}$.
- For X large enough for \mathcal{M}, let $\underset{\sim}{\mathcal{M}}{ }_{X}$ (or $\underset{\sim}{\mathcal{M}}$) denote the least equivalence relation on the set of linear \mathcal{L}-terms in variables from X which contains Σ and is closed under variable substitution.

Kelly's Completeness Theorem

(Recall: by our assumptions, $\Sigma \not \vDash x \approx y$.) If X is large enough for \mathcal{M}, then for any linear \mathcal{L}-terms s, t in variables from X,

$$
\Sigma \models s \approx t \quad \Longleftrightarrow \quad s{\underset{\sim}{\mathcal{M}}}_{X} t .
$$

Permuting variables

Permuting variables

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before, let X be large enough for \mathcal{M}.

Permuting variables

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before, let X be large enough for \mathcal{M}.

Easy Facts

- $\operatorname{Sym}(X)$ acts on the set of linear \mathcal{L}-terms with variables in X by

$$
\gamma \cdot s\left(x_{1}, \ldots\right):=s\left(\gamma\left(x_{1}\right), \ldots\right) \text { for all } \gamma \in \operatorname{Sym}(X)
$$

Permuting variables

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before, let X be large enough for \mathcal{M}.

Easy Facts

- $\operatorname{Sym}(X)$ acts on the set of linear \mathcal{L}-terms with variables in X by

$$
\gamma \cdot s\left(x_{1}, \ldots\right):=s\left(\gamma\left(x_{1}\right), \ldots\right) \text { for all } \gamma \in \operatorname{Sym}(X)
$$

and on the set of their equivalence classes $[s]:=s /{\underset{\sim}{\mathcal{M}}}_{X}$ by

$$
\gamma \cdot\left[s\left(x_{1}, \ldots\right)\right]:=\left[s\left(\gamma\left(x_{1}\right), \ldots\right)\right] \text { for all } \gamma \in \operatorname{Sym}(X) .
$$

Permuting variables

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before, let X be large enough for \mathcal{M}.

Easy Facts

- $\operatorname{Sym}(X)$ acts on the set of linear \mathcal{L}-terms with variables in X by

$$
\gamma \cdot s\left(x_{1}, \ldots\right):=s\left(\gamma\left(x_{1}\right), \ldots\right) \text { for all } \gamma \in \operatorname{Sym}(X)
$$

and on the set of their equivalence classes $[s]:=s /{\underset{\sim}{\mathcal{M}}}_{X}$ by

$$
\gamma \cdot\left[s\left(x_{1}, \ldots\right)\right]:=\left[s\left(\gamma\left(x_{1}\right), \ldots\right)\right] \text { for all } \gamma \in \operatorname{Sym}(X)
$$

- For every $\underset{\sim}{\mathcal{M}}{ }_{X}$-block $C=[s]$,

Permuting variables

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before, let X be large enough for \mathcal{M}.

Easy Facts

- $\operatorname{Sym}(X)$ acts on the set of linear \mathcal{L}-terms with variables in X by

$$
\gamma \cdot s\left(x_{1}, \ldots\right):=s\left(\gamma\left(x_{1}\right), \ldots\right) \text { for all } \gamma \in \operatorname{Sym}(X)
$$

and on the set of their equivalence classes $[s]:=s /{\underset{\sim}{\mathcal{M}}}_{X}$ by

$$
\gamma \cdot\left[s\left(x_{1}, \ldots\right)\right]:=\left[s\left(\gamma\left(x_{1}\right), \ldots\right)\right] \text { for all } \gamma \in \operatorname{Sym}(X)
$$

- For every $\underset{\sim}{\mathcal{M}}{ }_{X}$-block $C=[s]$,
- all terms in C have the same set $X_{C}(\subseteq X)$ of essential variables (mod Σ);

Permuting variables

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before, let X be large enough for \mathcal{M}.

Easy Facts

- $\operatorname{Sym}(X)$ acts on the set of linear \mathcal{L}-terms with variables in X by

$$
\gamma \cdot s\left(x_{1}, \ldots\right):=s\left(\gamma\left(x_{1}\right), \ldots\right) \text { for all } \gamma \in \operatorname{Sym}(X)
$$

and on the set of their equivalence classes $[s]:=s /{\underset{\sim}{\mathcal{M}}}_{X}$ by

$$
\gamma \cdot\left[s\left(x_{1}, \ldots\right)\right]:=\left[s\left(\gamma\left(x_{1}\right), \ldots\right)\right] \text { for all } \gamma \in \operatorname{Sym}(X)
$$

- For every $\underset{\sim}{\mathcal{M}}{ }_{X}$-block $C=[s]$,
- all terms in C have the same set $X_{C}(\subseteq X)$ of essential variables (mod Σ);
- C contains a term t whose variables are all essential;

Permuting variables

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before, let X be large enough for \mathcal{M}.

Easy Facts

- $\operatorname{Sym}(X)$ acts on the set of linear \mathcal{L}-terms with variables in X by

$$
\gamma \cdot s\left(x_{1}, \ldots\right):=s\left(\gamma\left(x_{1}\right), \ldots\right) \text { for all } \gamma \in \operatorname{Sym}(X)
$$

and on the set of their equivalence classes $[s]:=s /{\underset{\sim}{\mathcal{M}}}_{X}$ by

$$
\gamma \cdot\left[s\left(x_{1}, \ldots\right)\right]:=\left[s\left(\gamma\left(x_{1}\right), \ldots\right)\right] \text { for all } \gamma \in \operatorname{Sym}(X)
$$

- For every ${\underset{\sim}{\mathcal{M}}}^{\mathcal{M}}$-block $C=[s]$,
- all terms in C have the same set $X_{C}(\subseteq X)$ of essential variables (mod Σ);
- C contains a term t whose variables are all essential;
- $\operatorname{Sym}\left(X_{C}\right)$ has a unique subgroup $G_{C}=G_{t}(=$ symmetry group of C or $t)$ such that for all $\gamma \in \operatorname{Sym}(X)$,

$$
\gamma \cdot C=C \Longleftrightarrow \Sigma \models s \approx \gamma \cdot s \Longleftrightarrow \gamma\left(X_{C}\right)=X_{C} \text { and } \gamma \mid X_{C} \in G_{C} .
$$

Example: Linear Consequences of Σ

Example: Linear Consequences of Σ

$$
\begin{aligned}
& \mathcal{M}=(\mathcal{L}, \Sigma) \text { with } \mathcal{L}:=\left\{P_{1}, P_{2}\right\} \text { and } \\
& \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
&\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\} .
\end{aligned}
$$

Example: Linear Consequences of Σ

$$
\begin{aligned}
& \mathcal{M}=(\mathcal{L}, \Sigma) \text { with } \mathcal{L}:=\left\{P_{1}, P_{2}\right\} \text { and } \\
& \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
&\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\} .
\end{aligned}
$$

$X:=\{x, y, z\}$ is large enough for \mathcal{M}.

Example: Linear Consequences of Σ

$$
\begin{aligned}
& \mathcal{M}=(\mathcal{L}, \Sigma) \text { with } \mathcal{L}:=\left\{P_{1}, P_{2}\right\} \text { and } \\
& \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
&\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\} .
\end{aligned}
$$

$X:=\{x, y, z\}$ is large enough for \mathcal{M}.
Equiv classes of $\underset{\sim}{\mathcal{N}}$, arranged in $\operatorname{Sym}(X)$-orbits:

Example: Linear Consequences of Σ

$$
\begin{aligned}
& \mathcal{M}=(\mathcal{L}, \Sigma) \text { with } \mathcal{L}:=\left\{P_{1}, P_{2}\right\} \text { and } \\
& \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
&\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\} .
\end{aligned}
$$

$X:=\{x, y, z\}$ is large enough for \mathcal{M}.
Equiv classes of $\underset{\sim}{\mathcal{N}}$, arranged in $\operatorname{Sym}(X)$-orbits:

$$
\begin{aligned}
C_{0}: & x \stackrel{\mathcal{M}}{\approx} P_{1}(x, x, x) \stackrel{\mathcal{M}}{\approx} P_{2}(x, x, x) \stackrel{\mathcal{M}}{\approx} P_{1}(x, y, y) \\
& \approx P_{1}(x, z, z) \stackrel{\mathcal{M}}{\approx} P_{2}(y, y, x) \underset{\approx}{\mathcal{M}} P_{2}(z, z, x)
\end{aligned}
$$

Example: Linear Consequences of Σ

$$
\begin{aligned}
& \mathcal{M}=(\mathcal{L}, \Sigma) \text { with } \mathcal{L}:=\left\{P_{1}, P_{2}\right\} \text { and } \\
& \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
&\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\} .
\end{aligned}
$$

$X:=\{x, y, z\}$ is large enough for \mathcal{M}.
Equiv classes of $\underset{\sim}{\mathcal{N}}$, arranged in $\operatorname{Sym}(X)$-orbits:

$$
\begin{aligned}
& C_{0}: x \underset{\sim}{\mathcal{M}} P_{1}(x, x, x) \stackrel{\mathcal{M}}{\approx} P_{2}(x, x, x) \stackrel{\mathcal{M}}{\approx} P_{1}(x, y, y) \\
& \stackrel{\mathcal{M}}{\approx} P_{1}(x, z, z) \stackrel{\mathcal{M}}{\approx} P_{2}(y, y, x) \stackrel{\mathcal{M}}{\approx} P_{2}(z, z, x) \\
&-: y \approx \ldots \\
&-: z \approx \ldots
\end{aligned}
$$

Example: Linear Consequences of Σ

$$
\begin{aligned}
& \mathcal{M}=(\mathcal{L}, \Sigma) \text { with } \mathcal{L}:=\left\{P_{1}, P_{2}\right\} \text { and } \\
& \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
&\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\} .
\end{aligned}
$$

$X:=\{x, y, z\}$ is large enough for \mathcal{M}.
Equiv classes of $\underset{\sim}{\mathcal{M}}$, arranged in $\operatorname{Sym}(X)$-orbits:
$C_{0}: x \stackrel{\mathcal{M}}{\approx} P_{1}(x, x, x) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{2}(x, x, x) \stackrel{\mathcal{M}}{\approx} P_{1}(x, y, y)$ $\stackrel{\mathcal{M}}{\approx} P_{1}(x, z, z) \stackrel{\mathcal{M}}{\approx} P_{2}(y, y, x) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{2}(z, z, x)$
$-: y \approx \ldots$
$-: z \approx \ldots$

Example: Linear Consequences of Σ

$$
\begin{aligned}
& \mathcal{M}=(\mathcal{L}, \Sigma) \text { with } \mathcal{L}:=\left\{P_{1}, P_{2}\right\} \text { and } \\
& \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
&\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\} .
\end{aligned}
$$

$X:=\{x, y, z\}$ is large enough for \mathcal{M}.
Equiv classes of $\underset{\sim}{\mathcal{N}}$, arranged in $\operatorname{Sym}(X)$-orbits:
$C_{0}: x \stackrel{\mathcal{M}}{\approx} P_{1}(x, x, x) \underset{\sim}{\mathcal{M}} P_{2}(x, x, x) \underset{\sim}{\mathcal{M}} P_{1}(x, y, y)$ $\stackrel{\mathcal{M}}{\approx} P_{1}(x, z, z) \stackrel{\mathcal{M}}{\approx} P_{2}(y, y, x) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{2}(z, z, x)$
$-: y \approx \ldots$
$-: z \approx \ldots$

$$
\begin{array}{cc}
X_{C_{i}} & G_{C_{i}} \\
\{x\} & \{\mathrm{id}\}
\end{array}
$$

Example: Linear Consequences of Σ

$$
\begin{aligned}
& \mathcal{M}=(\mathcal{L}, \Sigma) \text { with } \mathcal{L}:=\left\{P_{1}, P_{2}\right\} \text { and } \\
& \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
&\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\} .
\end{aligned}
$$

$X:=\{x, y, z\}$ is large enough for \mathcal{M}.
Equiv classes of $\underset{\sim}{\mathcal{M}}$, arranged in $\operatorname{Sym}(X)$-orbits:

$$
\begin{aligned}
C_{0}: & x \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{1}(x, x, x) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{2}(x, x, x) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{1}(x, y, y) \\
& \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{1}(x, z, z) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{2}(y, y, x) \stackrel{\mathcal{N}}{\approx} P_{2}(z, z, x) \\
-: y & \approx \ldots \\
-: & \approx \ldots
\end{aligned}
$$

$$
\begin{array}{cc}
X_{C_{i}} & G_{C_{i}} \\
\{x\} & \{\mathrm{id}\}
\end{array}
$$

$C_{1}: P_{1}(x, x, y) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{2}(x, y, y) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{1}(x, y, x)$

Example: Linear Consequences of Σ

$$
\begin{aligned}
& \mathcal{M}=(\mathcal{L}, \Sigma) \text { with } \mathcal{L}:=\left\{P_{1}, P_{2}\right\} \text { and } \\
& \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
&\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\} .
\end{aligned}
$$

$X:=\{x, y, z\}$ is large enough for \mathcal{M}.
Equiv classes of $\underset{\sim}{\mathcal{M}}$, arranged in $\operatorname{Sym}(X)$-orbits:

$$
\begin{aligned}
& C_{0}: x \underset{\approx}{\mathcal{M}} P_{1}(x, x, x) \stackrel{\mathcal{M}}{\approx} P_{2}(x, x, x) \stackrel{\mathcal{M}}{\approx} P_{1}(x, y, y) \\
& \stackrel{\mathcal{M}}{\approx} P_{1}(x, z, z) \stackrel{\mathcal{M}}{\approx} P_{2}(y, y, x) \stackrel{\mathcal{M}}{\approx} P_{2}(z, z, x) \\
&-: y \approx \ldots \\
&-: z \approx \ldots
\end{aligned}
$$

$$
C_{1}: P_{1}(x, x, y) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{2}(x, y, y) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{1}(x, y, x)
$$

$$
-: P_{1}(y, y, x) \underset{\approx}{\mathcal{M}} P_{2}(y, x, x) \underset{\sim}{\mathcal{M}} P_{1}(y, x, y)
$$

$$
-: P_{1}(z, z, y) \underset{\approx}{\mathcal{M}} \ldots
$$

Example: Linear Consequences of Σ

$$
\begin{aligned}
& \mathcal{M}=(\mathcal{L}, \Sigma) \text { with } \mathcal{L}:=\left\{P_{1}, P_{2}\right\} \text { and } \\
& \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
&\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\} .
\end{aligned}
$$

$X:=\{x, y, z\}$ is large enough for \mathcal{M}.
Equiv classes of $\underset{\sim}{\mathcal{N}}$, arranged in $\operatorname{Sym}(X)$-orbits:

$$
\begin{aligned}
C_{0}: & x \underset{\approx}{\mathcal{M}} P_{1}(x, x, x) \stackrel{\mathcal{M}}{\approx} P_{2}(x, x, x) \stackrel{\mathcal{M}}{\approx} P_{1}(x, y, y) \\
& \stackrel{\mathcal{M}}{\approx} P_{1}(x, z, z) \stackrel{\mathcal{M}}{\approx} P_{2}(y, y, x) \stackrel{\mathcal{M}}{\approx} P_{2}(z, z, x) \\
-: y & \approx \ldots \\
-: & z \approx \ldots
\end{aligned}
$$

$$
\begin{array}{lc}
X_{C_{i}} & G_{C_{i}} \\
\{x\} & \{\mathrm{id}\}
\end{array}
$$

$$
\begin{array}{r}
C_{1}: P_{1}(x, x, y) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{2}(x, y, y) \stackrel{\mathcal{M}}{\approx} P_{1}(x, y, x) \\
-: P_{1}(y, y, x) \stackrel{\mathcal{\mathcal { M }}}{\approx} P_{2}(y, x, x) \underset{\sim}{\mathcal{\mathcal { N }}} P_{1}(y, x, y)
\end{array}
$$

$$
\{x, y\}
$$

$$
-: P_{1}(z, z, y) \stackrel{\mathcal{M}}{\approx} \ldots
$$

Example: Linear Consequences of Σ (cont'd)

$$
C_{2}: P_{2}(x, y, x) \underset{\approx}{\mathcal{M}} P_{2}(y, x, y)
$$

Example: Linear Consequences of Σ (cont'd)

$$
\begin{aligned}
C_{2}: P_{2}(x, y, x) & \stackrel{\mathcal{M}}{\approx} P_{2}(y, x, y) \\
-: & P_{2}(x, z, x) \\
& \underset{\sim}{\mathcal{N}} P_{2}(z, x, z) \\
-: P_{2}(y, z, y) & \stackrel{\mathcal{M}}{\approx} P_{2}(z, y, z)
\end{aligned}
$$

Example: Linear Consequences of Σ (contd)

$$
\begin{aligned}
C_{2}: P_{2}(x, y, x) & \underset{\sim}{\mathcal{N}} P_{2}(y, x, y) \\
-: P_{2}(x, z, x) & \underset{\sim}{\mathcal{M}} P_{2}(z, x, z) \\
-: P_{2}(y, z, y) & \stackrel{\mathcal{N}}{\approx} P_{2}(z, y, z) \\
C_{3}: P_{1}(x, y, z) & \stackrel{\mathcal{M}}{\approx} P_{1}(x, z, y)
\end{aligned}
$$

Example: Linear Consequences of Σ (contd)

$$
\begin{aligned}
& C_{2}: P_{2}(x, y, x) \stackrel{\mathcal{M}}{\approx} P_{2}(y, x, y) \\
&-: P_{2}(x, z, x) \stackrel{\mathcal{M}}{\approx} P_{2}(z, x, z) \\
&-: P_{2}(y, z, y) \\
& \underset{\sim}{\mathcal{M}} P_{2}(z, y, z) \\
& C_{3}: P_{1}(x, y, z) \stackrel{\mathcal{M}}{\approx} P_{1}(x, z, y) \\
&-: P_{1}(y, x, z) \\
&-: P_{1}(z, x, y) \underset{\sim}{\mathcal{M}} P_{1}(y, z, x) \\
& \approx P_{1}(z, y, x)
\end{aligned}
$$

Example: Linear Consequences of Σ (contd)

$$
\begin{aligned}
& C_{2}: P_{2}(x, y, x) \stackrel{\mathcal{M}}{\approx} P_{2}(y, x, y) \\
& -: P_{2}(x, z, x) \stackrel{\mathcal{M}}{\approx} P_{2}(z, x, z) \\
& -: P_{2}(y, z, y) \stackrel{\mathcal{M}}{\approx} P_{2}(z, y, z) \\
& C_{3}: P_{1}(x, y, z) \stackrel{\mathcal{M}}{\approx} P_{1}(x, z, y) \\
& -: P_{1}(y, x, z) \underset{\mathcal{M}}{\approx} P_{1}(y, z, x) \\
& -: P_{1}(z, x, y) \stackrel{\mathcal{M}}{\approx} P_{1}(z, y, x) \\
& C_{4}: P_{2}(x, y, z)
\end{aligned}
$$

Example: Linear Consequences of Σ (cont'd)

$$
\begin{aligned}
& C_{2}: P_{2}(x, y, x) \stackrel{\mathcal{M}}{\approx} P_{2}(y, x, y) \\
& -: P_{2}(x, z, x) \stackrel{\mathcal{M}}{\approx} P_{2}(z, x, z) \\
& -: P_{2}(y, z, y) \stackrel{\mathcal{M}}{\approx} P_{2}(z, y, z) \\
& C_{3}: P_{1}(x, y, z) \stackrel{\mathcal{M}}{\approx} P_{1}(x, z, y) \\
& -: P_{1}(y, x, z) \stackrel{\mathcal{M}}{\approx} P_{1}(y, z, x) \\
& -: P_{1}(z, x, y) \stackrel{\mathcal{M}}{\approx} P_{1}(z, y, x) \\
& C_{4}: P_{2}(x, y, z) \\
& -: P_{2}(x, z, y)
\end{aligned}
$$

Example: Linear Consequences of $\Sigma\left(\right.$ cont'd $\left.^{\prime}\right)$

$$
\begin{aligned}
& C_{2}: P_{2}(x, y, x) \stackrel{\mathcal{M}}{\approx} P_{2}(y, x, y) \\
& -: P_{2}(x, z, x) \underset{\sim}{\mathcal{M}} P_{2}(z, x, z) \\
& -: P_{2}(y, z, y) \stackrel{\mathcal{M}}{\approx} P_{2}(z, y, z) \\
& C_{3}: P_{1}(x, y, z) \stackrel{\mathcal{M}}{\approx} P_{1}(x, z, y) \\
& -: P_{1}(y, x, z) \stackrel{\mathcal{M}}{\approx} P_{1}(y, z, x) \\
& -: P_{1}(z, x, y) \stackrel{\mathcal{\sim}}{\approx} P_{1}(z, y, x) \\
& C_{4}: P_{2}(x, y, z) \\
& -: P_{2}(x, z, y)
\end{aligned}
$$

$$
-: P_{2}(z, y, x)
$$

$$
\begin{array}{ll}
X_{C_{i}} & G_{C_{i}} \\
\{x, y\} & \{\operatorname{id},(x y)\}
\end{array}
$$

Example: Linear Consequences of $\Sigma\left(\right.$ cont'd $\left.^{\prime}\right)$

$$
\begin{aligned}
& C_{2}: P_{2}(x, y, x) \stackrel{\mathcal{M}}{\approx} P_{2}(y, x, y) \\
& -: P_{2}(x, z, x) \stackrel{\mathcal{M}}{\approx} P_{2}(z, x, z) \\
& -: P_{2}(y, z, y) \stackrel{\mathcal{}}{\approx} P_{2}(z, y, z) \\
& C_{3}: P_{1}(x, y, z) \stackrel{\mathcal{M}}{\approx} P_{1}(x, z, y) \\
& -: P_{1}(y, x, z) \stackrel{\mathcal{M}}{\approx} P_{1}(y, z, x) \\
& -: P_{1}(z, x, y) \approx P_{1}(z, y, x) \\
& C_{4}: P_{2}(x, y, z) \\
& -: P_{2}(x, z, y)
\end{aligned}
$$

$$
-: P_{2}(z, y, x)
$$

$$
\begin{array}{ll}
X_{C_{i}} & G_{C_{i}} \\
\{x, y\} & \{\operatorname{id},(x y)\}
\end{array}
$$

$\{x, y, z\} \quad\{\mathrm{id},(y z)\}$

Example: Linear Consequences of $\Sigma\left(\right.$ cont'd $\left.^{\prime}\right)$

$$
\begin{aligned}
& C_{2}: P_{2}(x, y, x) \stackrel{\mathcal{M}}{\approx} P_{2}(y, x, y) \\
& -: P_{2}(x, z, x) \stackrel{\mathcal{M}}{\approx} P_{2}(z, x, z) \\
& -: P_{2}(y, z, y) \stackrel{\mathcal{}}{\approx} P_{2}(z, y, z) \\
& C_{3}: P_{1}(x, y, z) \stackrel{\mathcal{M}}{\approx} P_{1}(x, z, y) \\
& -: P_{1}(y, x, z) \stackrel{\mathcal{M}}{\approx} P_{1}(y, z, x) \\
& -: P_{1}(z, x, y) \approx P_{1}(z, y, x) \\
& C_{4}: P_{2}(x, y, z) \\
& -: P_{2}(x, z, y)
\end{aligned}
$$

$$
-: P_{2}(z, y, x)
$$

$$
\begin{array}{ll}
X_{C_{i}} \\
\{x, y\} & G_{C_{i}} \\
\{\mathrm{id},(x y)\} \\
& \\
\{x, y, z\} & \{\text { id, }(y z)\} \\
& \\
\{x, y, z\} & \{\mathrm{id}\}
\end{array}
$$

Example: Constructing Random Models of \mathcal{M}

Example: Constructing Random Models of \mathcal{M}

$$
\begin{gathered}
\mathcal{M}=(\mathcal{L}, \Sigma), \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y\right. \\
\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\}
\end{gathered}
$$

Example: Constructing Random Models of \mathcal{M}

$$
\begin{gathered}
\mathcal{M}=(\mathcal{L}, \Sigma), \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y\right. \\
\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\}
\end{gathered}
$$

$\mathbf{A}=\left\langle A ; P_{1}, P_{2}\right\rangle$ is a model of \mathcal{M} iff P_{1}, P_{2} have the foll. form

Example: Constructing Random Models of \mathcal{M}

$$
\begin{gathered}
\mathcal{M}=(\mathcal{L}, \Sigma), \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y\right. \\
\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\}
\end{gathered}
$$

$\mathbf{A}=\left\langle A ; P_{1}, P_{2}\right\rangle$ is a model of \mathcal{M} iff P_{1}, P_{2} have the foll. form

Example: Constructing Random Models of \mathcal{M}

$$
\begin{gathered}
\mathcal{M}=(\mathcal{L}, \Sigma), \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y\right. \\
\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\}
\end{gathered}
$$

$\mathbf{A}=\left\langle A ; P_{1}, P_{2}\right\rangle$ is a model of \mathcal{M} iff P_{1}, P_{2} have the foll. form (a, b, c distinct)

$a a a$
$a b b$
$a b c$
$a b a$
$a a b$

$a a a$
$b b a$
$a b c$
$a b a$
$a b b$

Example: Constructing Random Models of \mathcal{M}

$$
\begin{gathered}
\mathcal{M}=(\mathcal{L}, \Sigma), \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y\right. \\
\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\}
\end{gathered}
$$

$\mathbf{A}=\left\langle A ; P_{1}, P_{2}\right\rangle$ is a model of \mathcal{M} iff P_{1}, P_{2} have the foll. form (a, b, c distinct)

Example: Constructing Random Models of \mathcal{M}

$$
\begin{gathered}
\mathcal{M}=(\mathcal{L}, \Sigma), \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\}
\end{gathered}
$$

$\mathbf{A}=\left\langle A ; P_{1}, P_{2}\right\rangle$ is a model of \mathcal{M} iff P_{1}, P_{2} have the foll. form (a, b, c distinct)

Example: Constructing Random Models of \mathcal{M}

$$
\begin{gathered}
\mathcal{M}=(\mathcal{L}, \Sigma), \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y\right. \\
\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\}
\end{gathered}
$$

$\mathbf{A}=\left\langle A ; P_{1}, P_{2}\right\rangle$ is a model of \mathcal{M} iff P_{1}, P_{2} have the foll. form (a, b, c distinct)

Example: Constructing Random Models of \mathcal{M}

$$
\begin{gathered}
\mathcal{M}=(\mathcal{L}, \Sigma), \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y\right. \\
\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\}
\end{gathered}
$$

$\mathbf{A}=\left\langle A ; P_{1}, P_{2}\right\rangle$ is a model of \mathcal{M} iff P_{1}, P_{2} have the foll. form (a, b, c distinct)

Example: Constructing Random Models of \mathcal{M}

$$
\begin{gathered}
\mathcal{M}=(\mathcal{L}, \Sigma), \Sigma:=\left\{x \approx P_{1}(x, y, y), P_{1}(x, x, y) \approx P_{2}(x, y, y), P_{2}(x, x, y) \approx y,\right. \\
\left.P_{1}(x, y, z) \approx P_{1}(x, z, y), P_{2}(x, y, x) \approx P_{2}(y, x, y)\right\}
\end{gathered}
$$

$\mathbf{A}=\left\langle A ; P_{1}, P_{2}\right\rangle$ is a model of \mathcal{M} iff P_{1}, P_{2} have the foll. form (a, b, c distinct)

Also: $h_{1}, h_{2}, h_{3}, h_{4}$ are independent.

Constructing Random Models of \mathcal{M}

Constructing Random Models of \mathcal{M}

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before the ex's, and $X=\left\{x_{1}, \ldots, x_{m}\right\}$ large enough.

Constructing Random Models of \mathcal{M}

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before the ex's, and $X=\left\{x_{1}, \ldots, x_{m}\right\}$ large enough. For any set A and $k \geq 1$, let $A^{(k)}:=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: a_{1}, \ldots, a_{k}\right.$ distinct $\}$.

Constructing Random Models of \mathcal{M}

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before the ex's, and $X=\left\{x_{1}, \ldots, x_{m}\right\}$ large enough. For any set A and $k \geq 1$, let $A^{(k)}:=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: a_{1}, \ldots, a_{k}\right.$ distinct $\}$.

Fix $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ so that they form a maximal family of essentially different, nontrivial linear \mathcal{L}-terms, i.e.,

Constructing Random Models of \mathcal{M}

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before the ex's, and $X=\left\{x_{1}, \ldots, x_{m}\right\}$ large enough. For any set A and $k \geq 1$, let $A^{(k)}:=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: a_{1}, \ldots, a_{k}\right.$ distinct $\}$.

Fix $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ so that they form a maximal family of essentially different, nontrivial linear \mathcal{L}-terms, i.e.,

- $\left[t_{1}\right], \ldots,\left[t_{r}\right],\left[x_{1}\right]$ is a transversal for the $\operatorname{Sym}(X)$-orbits of the $\underset{\sim}{\mathcal{\sim}}{ }_{X}$-blocks.

Constructing Random Models of \mathcal{M}

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before the ex's, and $X=\left\{x_{1}, \ldots, x_{m}\right\}$ large enough. For any set A and $k \geq 1$, let $A^{(k)}:=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: a_{1}, \ldots, a_{k}\right.$ distinct $\}$.

Fix $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ so that they form a maximal family of essentially different, nontrivial linear \mathcal{L}-terms, i.e.,

- $\left[t_{1}\right], \ldots,\left[t_{r}\right],\left[x_{1}\right]$ is a transversal for the $\operatorname{Sym}(X)$-orbits of the $\underset{\sim}{\mathcal{\sim}}{ }_{X}$-blocks. Assume also (WLOG) that t_{i} depends on all d_{i} variables $(\bmod \Sigma)$, and

$$
(2 \leq) d:=d_{1}=\cdots=d_{\ell}<d_{\ell+1} \leq \cdots \leq d_{r}
$$

Constructing Random Models of \mathcal{M}

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before the ex's, and $X=\left\{x_{1}, \ldots, x_{m}\right\}$ large enough. For any set A and $k \geq 1$, let $A^{(k)}:=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: a_{1}, \ldots, a_{k}\right.$ distinct $\}$.

Fix $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ so that they form a maximal family of essentially different, nontrivial linear \mathcal{L}-terms, i.e.,

- $\left[t_{1}\right], \ldots,\left[t_{r}\right],\left[x_{1}\right]$ is a transversal for the $\operatorname{Sym}(X)$-orbits of the $\underset{\sim}{\mathcal{\sim}}{ }_{X}$-blocks. Assume also (WLOG) that t_{i} depends on all d_{i} variables $(\bmod \Sigma)$, and

$$
(2 \leq) d:=d_{1}=\cdots=d_{\ell}<d_{\ell+1} \leq \cdots \leq d_{r}
$$

Theorem

For any set A, the map $\mathbf{A} \mapsto\left(t_{i} \backslash A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$ is a bijection between the models of \mathcal{M} on A and the r-tuples $\left(h_{i}\right)_{1 \leq i \leq r}$ of functions $h_{i}: A^{\left(d_{i}\right)} \rightarrow A$ such that h_{i} is invariant under all permutations $\pi \in G_{\left[t_{i}\right]}$ of its variables.

Constructing Random Models of \mathcal{M}

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before the ex's, and $X=\left\{x_{1}, \ldots, x_{m}\right\}$ large enough. For any set A and $k \geq 1$, let $A^{(k)}:=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: a_{1}, \ldots, a_{k}\right.$ distinct $\}$.

Fix $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ so that they form a maximal family of essentially different, nontrivial linear \mathcal{L}-terms, i.e.,

- $\left[t_{1}\right], \ldots,\left[t_{r}\right],\left[x_{1}\right]$ is a transversal for the $\operatorname{Sym}(X)$-orbits of the $\underset{\sim}{\mathcal{\sim}}{ }_{X}$-blocks. Assume also (WLOG) that t_{i} depends on all d_{i} variables $(\bmod \Sigma)$, and

$$
(2 \leq) d:=d_{1}=\cdots=d_{\ell}<d_{\ell+1} \leq \cdots \leq d_{r}
$$

Theorem

For any set A, the map $\mathbf{A} \mapsto\left(t_{i} \backslash A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$ is a bijection between the models of \mathcal{M} on A and the r-tuples $\left(h_{i}\right)_{1 \leq i \leq r}$ of functions $h_{i}: A^{\left(d_{i}\right)} \rightarrow A$ such that h_{i} is invariant under all permutations $\pi \in G_{\left[t_{i}\right]}$ of its variables.

- The functions in each such r-tuple $\left(h_{i}\right)_{1 \leq i \leq r}$ are independent;

Constructing Random Models of \mathcal{M}

Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ be as before the ex's, and $X=\left\{x_{1}, \ldots, x_{m}\right\}$ large enough. For any set A and $k \geq 1$, let $A^{(k)}:=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: a_{1}, \ldots, a_{k}\right.$ distinct $\}$.

Fix $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ so that they form a maximal family of essentially different, nontrivial linear \mathcal{L}-terms, i.e.,

- $\left[t_{1}\right], \ldots,\left[t_{r}\right],\left[x_{1}\right]$ is a transversal for the $\operatorname{Sym}(X)$-orbits of the $\underset{\sim}{\mathcal{\sim}}{ }_{X}$-blocks. Assume also (WLOG) that t_{i} depends on all d_{i} variables $(\bmod \Sigma)$, and

$$
(2 \leq) d:=d_{1}=\cdots=d_{\ell}<d_{\ell+1} \leq \cdots \leq d_{r}
$$

Theorem

For any set A, the map $\mathbf{A} \mapsto\left(t_{i} \backslash A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$ is a bijection between the models of \mathcal{M} on A and the r-tuples $\left(h_{i}\right)_{1 \leq i \leq r}$ of functions $h_{i}: A^{\left(d_{i}\right)} \rightarrow A$ such that h_{i} is invariant under all permutations $\pi \in G_{\left[t_{i}\right]}$ of its variables.

- The functions in each such r-tuple $\left(h_{i}\right)_{1 \leq i \leq r}$ are independent; moreover
- for every i, we have $h_{i}=\bigcup\left\{h_{i} \backslash D^{\left(d_{i}\right)}: D \in\binom{A}{d_{i}}\right\}$ where the functions $h_{i} \upharpoonright D^{\left(d_{i}\right)}\left(D \in\binom{A}{d_{i}}\right)$ are independent.

Characterization of Idemprimality

Characterization of Idemprimality

Main Theorem

The following conditions on \mathcal{M} are equivalent:

Characterization of Idemprimality

Main Theorem

The following conditions on \mathcal{M} are equivalent:
(1) With probability 1, a random finite model of \mathcal{M} is idemprimal.

Characterization of Idemprimality

Main Theorem

The following conditions on \mathcal{M} are equivalent:
(1) With probability 1, a random finite model of \mathcal{M} is idemprimal.
(2) With probability 1, a random finite model of \mathcal{M} has no 2-element subalgebras.

Characterization of Idemprimality

Main Theorem

The following conditions on \mathcal{M} are equivalent:
(1) With probability 1, a random finite model of \mathcal{M} is idemprimal.
(2) With probability 1, a random finite model of \mathcal{M} has no 2-element subalgebras.
(3) There exist either

- three essentially different nontrivial binary terms for \mathcal{M}, or

Characterization of Idemprimality

Main Theorem

The following conditions on \mathcal{M} are equivalent:
(1) With probability 1, a random finite model of \mathcal{M} is idemprimal.
(2) With probability 1, a random finite model of \mathcal{M} has no 2-element subalgebras.
(3) There exist either

- three essentially different nontrivial binary terms for \mathcal{M}, or
- two essentially different nontrivial binary terms, s and t, for \mathcal{M} such that $\Sigma \not \equiv s(x, y) \approx s(y, x)$.

Characterization of Idemprimality

Main Theorem

The following conditions on \mathcal{M} are equivalent:
(1) With probability 1, a random finite model of \mathcal{M} is idemprimal.
(2) With probability 1, a random finite model of \mathcal{M} has no 2-element subalgebras.
(3) There exist either

- three essentially different nontrivial binary terms for \mathcal{M}, or
- two essentially different nontrivial binary terms, s and t, for \mathcal{M} such that $\Sigma \mid \vDash s(x, y) \approx s(y, x)$.

Consequently:

- If \mathcal{M} satisfies (3), then $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\neg \hat{\mathcal{C}})=0$ for every strong idempotent linear Maltsev condition $\hat{\mathcal{C}}$.

Characterization of Idemprimality

Main Theorem

The following conditions on \mathcal{M} are equivalent:
(1) With probability 1, a random finite model of \mathcal{M} is idemprimal.
(2) With probability 1, a random finite model of \mathcal{M} has no 2-element subalgebras.
(3) There exist either

- three essentially different nontrivial binary terms for \mathcal{M}, or
- two essentially different nontrivial binary terms, s and t, for \mathcal{M} such that $\Sigma \not \equiv s(x, y) \approx s(y, x)$.

Consequently:

- If \mathcal{M} satisfies (3), then $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\neg \hat{\mathcal{C}})=0$ for every strong idempotent linear Maltsev condition $\hat{\mathcal{C}}$.
- In particular, if \mathcal{M} is the system for congr 3-permutability, then the probability that a random finite model of \mathcal{M} has no Maltsev term is 0 . This answers

Subalgebras

Subalgebras

Recall: $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ is a max family of essentially different, nontrivial linear \mathcal{L}-terms s.t. each t_{i} depends on all d_{i} variables $(\bmod \Sigma)$, and $(2 \leq) d:=d_{1}=\cdots=d_{\ell}<d_{\ell+1} \leq \cdots \leq d_{r}$.

Subalgebras

Recall: $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ is a max family of essentially different, nontrivial linear \mathcal{L}-terms s.t. each t_{i} depends on all d_{i} variables $(\bmod \Sigma)$, and $(2 \leq) d:=d_{1}=\cdots=d_{\ell}<d_{\ell+1} \leq \cdots \leq d_{r}$.
For $k \geq d$ let $\quad p_{\mathcal{M}}(k):=\sum_{i=1}^{r} q_{i}\binom{k}{d_{i}} \quad$ where $q_{i}=\left|\operatorname{Sym}\left(x_{1}, \ldots, x_{d_{i}}\right): G_{\left[t_{i}\right]}\right|$.

Subalgebras

Recall: $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ is a max family of essentially different, nontrivial linear \mathcal{L}-terms s.t. each t_{i} depends on all d_{i} variables $(\bmod \Sigma)$, and $(2 \leq) d:=d_{1}=\cdots=d_{\ell}<d_{\ell+1} \leq \cdots \leq d_{r}$.
For $k \geq d$ let $\quad p_{\mathcal{M}}(k):=\sum_{i=1}^{r} q_{i}\binom{k}{d_{i}} \quad$ where $q_{i}=\left|\operatorname{Sym}\left(x_{1}, \ldots, x_{d_{i}}\right): G_{\left[t_{i}\right]}\right|$.

Theorem

If \mathbf{A} is random finite model of \mathcal{M}, then every subset of \mathbf{A} of size less than d is a subalgebra of \mathbf{A}.

Subalgebras

Recall: $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ is a max family of essentially different, nontrivial linear \mathcal{L}-terms s.t. each t_{i} depends on all d_{i} variables $(\bmod \Sigma)$, and $(2 \leq) d:=d_{1}=\cdots=d_{\ell}<d_{\ell+1} \leq \cdots \leq d_{r}$.
For $k \geq d$ let $\quad p_{\mathcal{M}}(k):=\sum_{i=1}^{r} q_{i}\binom{k}{d_{i}} \quad$ where $q_{i}=\left|\operatorname{Sym}\left(x_{1}, \ldots, x_{d_{i}}\right): G_{\left[t_{i}\right]}\right|$.

Theorem

If \mathbf{A} is random finite model of \mathcal{M}, then every subset of \mathbf{A} of size less than d is a subalgebra of \mathbf{A}. Moreover,
(i) $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\mathbf{A}$ has no proper subalg of size $\geq d+2)=1$;

Subalgebras

Recall: $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ is a max family of essentially different, nontrivial linear \mathcal{L}-terms s.t. each t_{i} depends on all d_{i} variables $(\bmod \Sigma)$, and $(2 \leq) d:=d_{1}=\cdots=d_{\ell}<d_{\ell+1} \leq \cdots \leq d_{r}$.
For $k \geq d$ let $\quad p_{\mathcal{M}}(k):=\sum_{i=1}^{r} q_{i}\binom{k}{d_{i}} \quad$ where $q_{i}=\left|\operatorname{Sym}\left(x_{1}, \ldots, x_{d_{i}}\right): G_{\left[t_{i}\right]}\right|$.

Theorem

If \mathbf{A} is random finite model of \mathcal{M}, then every subset of \mathbf{A} of size less than d is a subalgebra of A. Moreover,
(i) $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\mathbf{A}$ has no proper subalg of size $\geq d+2)=1$;
(ii) $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\mathbf{A}$ has no proper subalg of size $d+1)=1$ if $p_{\mathcal{M}}(d+1)>d+1$;

Subalgebras

Recall: $t_{i}=t_{i}\left(x_{1}, \ldots, x_{d_{i}}\right)(1 \leq i \leq r)$ is a max family of essentially different, nontrivial linear \mathcal{L}-terms s.t. each t_{i} depends on all d_{i} variables $(\bmod \Sigma)$, and $(2 \leq) d:=d_{1}=\cdots=d_{\ell}<d_{\ell+1} \leq \cdots \leq d_{r}$.
For $k \geq d$ let $\quad p_{\mathcal{M}}(k):=\sum_{i=1}^{r} q_{i}\binom{k}{d_{i}}$ where $q_{i}=\left|\operatorname{Sym}\left(x_{1}, \ldots, x_{d_{i}}\right): G_{\left[t_{i}\right]}\right|$.

Theorem

If \mathbf{A} is random finite model of \mathcal{M}, then every subset of \mathbf{A} of size less than d is a subalgebra of \mathbf{A}. Moreover,
(i) $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\mathbf{A}$ has no proper subalg of size $\geq d+2)=1$;
(ii) $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\mathbf{A}$ has no proper subalg of size $d+1)=1$ if $p_{\mathcal{M}}(d+1)>d+1$;
(iii) $\operatorname{Pr}_{\mathcal{M}}^{\infty}(\mathbf{A}$ has no proper subalg of size $d)= \begin{cases}1 & \text { if } p_{\mathcal{M}}(d)>d, \\ e^{-d^{d} / d!} & \text { if } p_{\mathcal{M}}(d)=d, \\ 0 & \text { if } p_{\mathcal{M}}(d)<d .\end{cases}$

Idea of Proof of the Theorem on Subalgebras

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$.

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,
$\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,

$$
\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \backslash D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}
$$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,

$$
\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \mid D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}=\left(\frac{k}{n}\right)^{p \mathcal{M}(k)}
$$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,

$$
\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \mid D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}=\binom{k}{n}^{p \mathcal{M}(k)}
$$

(i) $\operatorname{Pr}(\mathbf{A}$ has a proper subalg of size $\geq d+2)$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,

$$
\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \mid D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}=\left(\frac{k}{n}\right)^{p_{\mathcal{M}}(k)}
$$

(i) $\operatorname{Pr}(\mathbf{A}$ has a proper subalg of size $\geq d+2)$

$$
\leq \sum_{k=d+2}^{n-1} \sum_{B \in\binom{A}{k}} \operatorname{Pr}(B \text { is a subalg of } \mathbf{A})
$$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,
$\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \mid D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}=\binom{k}{n}^{p \mathcal{M}(k)}$
(i) $\operatorname{Pr}(\mathbf{A}$ has a proper subalg of size $\geq d+2)$

$$
\leq \sum_{k=d+2}^{n-1} \sum_{B \in\binom{A}{k}} \operatorname{Pr}(B \text { is a subalg of } \mathbf{A})=\sum_{k=d+2}^{n-1}\binom{n}{k}\binom{k}{n}^{p_{\mathcal{M}}(k)}
$$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,
$\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \mid D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}=\left(\frac{k}{n}\right)^{p \mathcal{M}(k)}$
(i) $\operatorname{Pr}(\mathbf{A}$ has a proper subalg of size $\geq d+2)$

$$
\leq \sum_{k=d+2}^{n-1} \sum_{B \in\binom{A}{k}} \operatorname{Pr}(B \text { is a subalg of } \mathbf{A})=\sum_{k=d+2}^{n-1}\binom{n}{k}\left(\frac{k}{n}\right)^{p_{\mathcal{M}}(k)} \xrightarrow{n \rightarrow \infty} 0
$$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,

$$
\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \mid D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}=\left(\frac{k}{n}\right)^{p_{\mathcal{M}}(k)}
$$

(i) $\operatorname{Pr}(\mathbf{A}$ has a proper subalg of size $\geq d+2)$

$$
\leq \sum_{k=d+2}^{n-1} \sum_{B \in\binom{A}{k}} \operatorname{Pr}(B \text { is a subalg of } \mathbf{A})=\sum_{k=d+2}^{n-1}\binom{n}{k}\left(\frac{k}{n}\right)^{p_{\mathcal{M}}(k)} \xrightarrow{n \rightarrow \infty} 0
$$

(iii) $\operatorname{Pr}(\mathbf{A}$ has no proper subalg of size $d)$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,

$$
\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \mid D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}=\left(\frac{k}{n}\right)^{p_{\mathcal{M}}(k)}
$$

(i) $\operatorname{Pr}(\mathbf{A}$ has a proper subalg of size $\geq d+2)$

$$
\leq \sum_{k=d+2}^{n-1} \sum_{B \in\binom{A}{k}} \operatorname{Pr}(B \text { is a subalg of } \mathbf{A})=\sum_{k=d+2}^{n-1}\binom{n}{k}\left(\frac{k}{n}\right)^{p_{\mathcal{M}}(k)} \xrightarrow{n \rightarrow \infty} 0
$$

(iii) $\operatorname{Pr}(\mathbf{A}$ has no proper subalg of size $d)=\operatorname{Pr}\left(\bigwedge_{B \in\binom{A}{d}}(B\right.$ is not a subalg of $\left.\mathbf{A})\right)$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,
$\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \mid D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}=\left(\frac{k}{n}\right)^{p^{\mathcal{M}}(k)}$
(i) $\operatorname{Pr}(\mathbf{A}$ has a proper subalg of size $\geq d+2)$

$$
\leq \sum_{k=d+2}^{n-1} \sum_{B \in\binom{A}{k}} \operatorname{Pr}(B \text { is a subalg of } \mathbf{A})=\sum_{k=d+2}^{n-1}\binom{n}{k}\left(\frac{k}{n}\right)^{p_{\mathcal{M}}(k)} \xrightarrow{n \rightarrow \infty} 0 .
$$

(iii) $\operatorname{Pr}(\mathbf{A}$ has no proper subalg of size $d)=\operatorname{Pr}\left(\bigwedge_{B \in\binom{A}{d}}(B\right.$ is not a subalg of $\left.\mathbf{A})\right)$

$$
=\prod_{B \in\binom{A}{d}} \operatorname{Pr}(\underbrace{B \text { is not a subalg of } \mathbf{A}}_{1-(d / n)^{p(d)}})
$$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,
$\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \mid D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}=\left(\frac{k}{n}\right)^{p_{\mathcal{M}}(k)}$
(i) $\operatorname{Pr}(\mathbf{A}$ has a proper subalg of size $\geq d+2)$

$$
\leq \sum_{k=d+2}^{n-1} \sum_{B \in\binom{A}{k}} \operatorname{Pr}(B \text { is a subalg of } \mathbf{A})=\sum_{k=d+2}^{n-1}\binom{n}{k}\left(\frac{k}{n}\right)^{p_{\mathcal{M}}(k)} \xrightarrow{n \rightarrow \infty} 0 .
$$

(iii) $\operatorname{Pr}(\mathbf{A}$ has no proper subalg of size $d)=\operatorname{Pr}\left(\bigwedge_{B \in\binom{A}{d}}(B\right.$ is not a subalg of $\left.\mathbf{A})\right)$

$$
=\prod_{B \in\binom{A}{d}} \operatorname{Pr}(\underbrace{B \text { is not a subalg of A }}_{1-(d / n)^{p(d)}})=\left(1-\left(\frac{d}{n}\right)^{p(d)}\right)^{\binom{n}{d}}
$$

Idea of Proof of the Theorem on Subalgebras

Let \mathbf{A} be a model of \mathcal{M} on $A=[n]$, det'd by $\left(h_{i}\right)_{1 \leq i \leq r}:=\left(t_{i} \mid A^{\left(d_{i}\right)}\right)_{1 \leq i \leq r}$. For $B \in\binom{A}{k}$,
$\operatorname{Pr}(\underbrace{B \text { is a subalg of } \mathbf{A}}_{h_{i}\left(B^{\left(d_{i}\right)}\right) \subseteq B \text { for all } i})=\prod_{i} \prod_{D \in\binom{B}{d_{i}}} \underbrace{\operatorname{Pr}\left(h_{i} \mid D^{\left(d_{i}\right)} \text { maps into } B\right)}_{(k / n)^{q_{i}}}=\left(\frac{k}{n}\right)^{p \mathcal{M}(k)}$
(i) $\operatorname{Pr}(\mathbf{A}$ has a proper subalg of size $\geq d+2)$

$$
\leq \sum_{k=d+2}^{n-1} \sum_{B \in\binom{A}{k}} \operatorname{Pr}(B \text { is a subalg of } \mathbf{A})=\sum_{k=d+2}^{n-1}\binom{n}{k}\left(\frac{k}{n}\right)^{p_{\mathcal{M}}(k)} \xrightarrow{n \rightarrow \infty} 0 .
$$

(iii) $\operatorname{Pr}(\mathbf{A}$ has no proper subalg of size $d)=\operatorname{Pr}\left(\bigwedge_{B \in\binom{A}{d}}(B\right.$ is not a subalg of $\left.\mathbf{A})\right)$

$$
=\prod_{B \in\binom{A}{d}} \operatorname{Pr}(\underbrace{B \text { is not a subalg of } \mathbf{A}}_{1-(d / n)^{p(d)}})=\left(1-\left(\frac{d}{n}\right)^{p(d)}\right)^{\binom{n}{d}} \xrightarrow{n \rightarrow \infty}\left\{\begin{array}{l}
1 \\
e^{-d^{d} / d!} \\
0
\end{array}\right.
$$

Proof of the Main Theorem

Proof of the Main Theorem

(1) $\stackrel{\text { easy }}{\Longrightarrow}$
(2)
$\stackrel{\text { SubalgThm }}{\Longleftrightarrow}$

$$
d=2 \text { and } p_{\mathcal{M}}(2)>2 \quad \stackrel{\text { easy }}{\Longrightarrow} \text { (3) }
$$

$\Longrightarrow \quad$ with probab 1 , no proper subalg's of size ≥ 3 either

Proof of the Main Theorem

(1) $\stackrel{\text { easy }}{\Longrightarrow}$
(2)
$\stackrel{\rightharpoonup}{\bullet \text { SubalgThm }}$

$$
d=2 \text { and } p_{\mathcal{M}}(2)>2 \quad \stackrel{\text { easy }}{\Longleftrightarrow}
$$

$\Longrightarrow \quad$ with probab 1 , no proper subalg's of size ≥ 3 either $(2) \Longrightarrow(1)$: Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.

Proof of the Main Theorem

$(1) \stackrel{\text { easy }}{\Longrightarrow}(2) \stackrel{\text { Subaleghim }}{\Longleftrightarrow} d=2$ and $p_{\mathcal{M}}(2)>2 \underset{ }{\Longrightarrow} \stackrel{\text { with probab 1, no proper subalg's of siz }}{\Longleftrightarrow}$
$(2) \Longrightarrow(1)$ Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.
For (1), it suffices to show that, with probability 1 ,

- A has no nonidentity automorphisms, and
- A has no compatible crosses $X_{u}:=(A \times\{u\}) \cup(\{u\} \times A)(u \in A)$.

Proof of the Main Theorem

$(1) \stackrel{\text { easy }}{\Longrightarrow}(2) \stackrel{\text { Subaleghim }}{\Longleftrightarrow} d=2$ and $p_{\mathcal{M}}(2)>2 \underset{ }{\Longrightarrow} \stackrel{\text { with probab 1, no proper subalg's of siz }}{\Longleftrightarrow}$
$(2) \Longrightarrow(1)$ Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.
For (1), it suffices to show that, with probability 1 ,

- A has no nonidentity automorphisms, and
- A has no compatible crosses $\mathrm{X}_{u}:=(A \times\{u\}) \cup(\{u\} \times A)(u \in A)$. Let $A=[n]$ and $\diamond:=t_{1} \upharpoonright A^{(2)}$.

Proof of the Main Theorem

$(1) \stackrel{\text { easy }}{\Longrightarrow}(2) \stackrel{\text { Subalesthim }}{\Longleftrightarrow} d=2$ and $p_{\mathcal{M}}(2)>2 \underset{\text { with probab 1, no proper subalg's of siz }}{\Longrightarrow} \stackrel{\text { easy }}{\Longrightarrow}$
$(2) \Longrightarrow(1)$ Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.
For (1), it suffices to show that, with probability 1 ,

- A has no nonidentity automorphisms, and
- A has no compatible crosses $X_{u}:=(A \times\{u\}) \cup(\{u\} \times A)(u \in A)$. Let $A=[n]$ and $\diamond:=t_{1} \upharpoonright A^{(2)}$.
- Let $\sigma \in \operatorname{Sym}(A), \sigma \neq \mathrm{id}$; say $\sigma(a)=b \neq a$. Then

Proof of the Main Theorem

$(1) \stackrel{\text { easy }}{\Longrightarrow}(2) \stackrel{\text { Subalght }}{\Longleftrightarrow} d=2$ and $p_{\mathcal{M}}(2)>2 \underset{~ w i t h ~ p r o b a b ~ 1, ~ n o ~ p r o p e r ~ s u b a l g ' s ~ o f ~ s i z e ~}{\Longrightarrow}$

$(2) \Longrightarrow$ (1): Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.
For (1), it suffices to show that, with probability 1 ,

- A has no nonidentity automorphisms, and
- A has no compatible crosses $X_{u}:=(A \times\{u\}) \cup(\{u\} \times A)(u \in A)$. Let $A=[n]$ and $\diamond:=t_{1} \upharpoonright A^{(2)}$.
- Let $\sigma \in \operatorname{Sym}(A), \sigma \neq \mathrm{id}$; say $\sigma(a)=b \neq a$. Then

$$
\operatorname{Pr}(\sigma \in \operatorname{Aut}(\mathbf{A}))
$$

Proof of the Main Theorem

(1) $\stackrel{\text { easy }}{\Longrightarrow}$ (2) $\stackrel{\text { subaleThim }}{\Longleftrightarrow} d=2$ and $p_{\mathcal{M}}(2)>2 \quad$ easy (3) $\quad \stackrel{\text { with probab 1, no proper subalg's of size } \geq 3 \text { either }}{\Longrightarrow}$
(2) \Longrightarrow (1): Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.

For (1), it suffices to show that, with probability 1 ,

- A has no nonidentity automorphisms, and
- A has no compatible crosses $X_{u}:=(A \times\{u\}) \cup(\{u\} \times A)(u \in A)$. Let $A=[n]$ and $\diamond:=t_{1} \upharpoonright A^{(2)}$.
- Let $\sigma \in \operatorname{Sym}(A), \sigma \neq \mathrm{id}$; say $\sigma(a)=b \neq a$. Then

$$
\operatorname{Pr}(\sigma \in \operatorname{Aut}(\mathbf{A})) \leq \operatorname{Pr}(\sigma(a \diamond x)=b \diamond \sigma(x) \text { for all } x \neq a, b)
$$

Proof of the Main Theorem

(1) $\stackrel{\text { easy }}{\Longrightarrow}(2) \stackrel{\text { subalentim }}{\Longleftrightarrow} d=2$ and $p_{\mathcal{M}}(2)>2 \underset{\text { with probab 1, no proper subalg's of size } \geq 3 \text { either }}{\Longrightarrow}$
(2) \Longrightarrow (1): Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.

For (1), it suffices to show that, with probability 1 ,

- A has no nonidentity automorphisms, and
- A has no compatible crosses $X_{u}:=(A \times\{u\}) \cup(\{u\} \times A)(u \in A)$. Let $A=[n]$ and $\diamond:=t_{1} \upharpoonright A^{(2)}$.
- Let $\sigma \in \operatorname{Sym}(A), \sigma \neq \mathrm{id}$; say $\sigma(a)=b \neq a$. Then

$$
\operatorname{Pr}(\sigma \in \operatorname{Aut}(\mathbf{A})) \leq \operatorname{Pr}(\sigma(a \diamond x)=b \diamond \sigma(x) \text { for all } x \neq a, b) \leq\left(\frac{1}{n}\right)^{n-2}
$$

Proof of the Main Theorem

(1) $\stackrel{\text { easy }}{\Longrightarrow}(2) \stackrel{\text { subalentim }}{\Longleftrightarrow} d=2$ and $p_{\mathcal{M}}(2)>2 \underset{\text { with probab 1, no proper subalg's of size } \geq 3 \text { either }}{\Longrightarrow}$
(2) \Longrightarrow (1): Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.

For (1), it suffices to show that, with probability 1 ,

- A has no nonidentity automorphisms, and
- A has no compatible crosses $X_{u}:=(A \times\{u\}) \cup(\{u\} \times A)(u \in A)$. Let $A=[n]$ and $\diamond:=t_{1} \upharpoonright A^{(2)}$.
- Let $\sigma \in \operatorname{Sym}(A), \sigma \neq \mathrm{id}$; say $\sigma(a)=b \neq a$. Then
$\operatorname{Pr}(\sigma \in \operatorname{Aut}(\mathbf{A})) \leq \operatorname{Pr}(\sigma(a \diamond x)=b \diamond \sigma(x)$ for all $x \neq a, b) \leq\left(\frac{1}{n}\right)^{n-2}$. Hence,
$\operatorname{Pr}(\mathbf{A}$ has a nonidentity automorphism)

Proof of the Main Theorem

(1) $\stackrel{\text { easy }}{\Longrightarrow}(2) \stackrel{\text { subalentim }}{\Longleftrightarrow} d=2$ and $p_{\mathcal{M}}(2)>2 \underset{\text { with probab 1, no proper subalg's of size } \geq 3 \text { either }}{\Longrightarrow}$
(2) \Longrightarrow (1): Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.

For (1), it suffices to show that, with probability 1 ,

- A has no nonidentity automorphisms, and
- A has no compatible crosses $X_{u}:=(A \times\{u\}) \cup(\{u\} \times A)(u \in A)$. Let $A=[n]$ and $\diamond:=t_{1} \upharpoonright A^{(2)}$.
- Let $\sigma \in \operatorname{Sym}(A), \sigma \neq \mathrm{id}$; say $\sigma(a)=b \neq a$. Then
$\operatorname{Pr}(\sigma \in \operatorname{Aut}(\mathbf{A})) \leq \operatorname{Pr}(\sigma(a \diamond x)=b \diamond \sigma(x)$ for all $x \neq a, b) \leq\left(\frac{1}{n}\right)^{n-2}$.
Hence,
$\operatorname{Pr}(\mathbf{A}$ has a nonidentity automorphism $) \leq n!\left(\frac{1}{n}\right)^{n-2}$

Proof of the Main Theorem

(1) $\stackrel{\text { easy }}{\Longrightarrow}$ (2) $\stackrel{\text { subalghimi }}{\Longleftrightarrow} d=2$ and $p_{\mathcal{M}}(2)>2 \underset{\text { with probab 1, no proper subalg's of size } \geq 3 \text { either }}{\Longleftrightarrow}$
(2) \Longrightarrow (1): Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.

For (1), it suffices to show that, with probability 1 ,

- A has no nonidentity automorphisms, and
- A has no compatible crosses $X_{u}:=(A \times\{u\}) \cup(\{u\} \times A)(u \in A)$. Let $A=[n]$ and $\diamond:=t_{1} \upharpoonright A^{(2)}$.
- Let $\sigma \in \operatorname{Sym}(A), \sigma \neq \mathrm{id}$; say $\sigma(a)=b \neq a$. Then
$\operatorname{Pr}(\sigma \in \operatorname{Aut}(\mathbf{A})) \leq \operatorname{Pr}(\sigma(a \diamond x)=b \diamond \sigma(x)$ for all $x \neq a, b) \leq\left(\frac{1}{n}\right)^{n-2}$. Hence,
$\operatorname{Pr}(\mathbf{A}$ has a nonidentity automorphism $) \leq n!\left(\frac{1}{n}\right)^{n-2} \xrightarrow{n \rightarrow \infty} 0$.

Proof of the Main Theorem

(1) $\stackrel{\text { easy }}{\Longrightarrow}$ (2) $\stackrel{\text { subalentiin }}{\Longleftrightarrow} d=2$ and $p_{\mathcal{M}}(2)>2 \xrightarrow{\Longrightarrow}$ with probab 1, no proper subalg's of size ≥ 3 either
(2) \Longrightarrow (1): Let \mathbf{A} be a random finite model of \mathcal{M} s.t. (2) holds.

For (1), it suffices to show that, with probability 1 ,

- A has no nonidentity automorphisms, and
- A has no compatible crosses $X_{u}:=(A \times\{u\}) \cup(\{u\} \times A)(u \in A)$. Let $A=[n]$ and $\diamond:=t_{1} \upharpoonright A^{(2)}$.
- Let $\sigma \in \operatorname{Sym}(A), \sigma \neq \mathrm{id}$; say $\sigma(a)=b \neq a$. Then
$\operatorname{Pr}(\sigma \in \operatorname{Aut}(\mathbf{A})) \leq \operatorname{Pr}(\sigma(a \diamond x)=b \diamond \sigma(x)$ for all $x \neq a, b) \leq\left(\frac{1}{n}\right)^{n-2}$.
Hence,
$\operatorname{Pr}(\mathbf{A}$ has a nonidentity automorphism $) \leq n!\left(\frac{1}{n}\right)^{n-2} \xrightarrow{n \rightarrow \infty} 0$.
- Similar, using that X_{u} compatible implies:

$$
u \diamond x=u \text { for all } x \neq u \quad \text { or } \quad x \diamond u=u \text { for all } x \neq u
$$

When the Main Theorem Does Not Apply: An Example

When the Main Theorem Does Not Apply: An Example

Let $\mathcal{M}=(\{P\}, \Sigma)$ with $\Sigma=\{P(x, y, y) \approx x, P(x, x, y) \approx y\}$.

When the Main Theorem Does Not Apply: An Example

Let $\mathcal{M}=(\{P\}, \Sigma)$ with $\Sigma=\{P(x, y, y) \approx x, P(x, x, y) \approx y\}$. $X=\{x, y, z\}$ is large enough for \mathcal{M}.

When the Main Theorem Does Not Apply: An Example

Let $\mathcal{M}=(\{P\}, \Sigma)$ with $\Sigma=\{P(x, y, y) \approx x, P(x, x, y) \approx y\}$. $X=\{x, y, z\}$ is large enough for \mathcal{M}.

- $d=2$ and $r=2$; say, $t_{1}:=P(x, y, x), t_{2}:=P(x, y, z)$.

When the Main Theorem Does Not Apply: An Example

Let $\mathcal{M}=(\{P\}, \Sigma)$ with $\Sigma=\{P(x, y, y) \approx x, P(x, x, y) \approx y\}$. $X=\{x, y, z\}$ is large enough for \mathcal{M}.

- $d=2$ and $r=2$; say, $t_{1}:=P(x, y, x), t_{2}:=P(x, y, z)$.
- $p_{\mathcal{M}}(2)=q_{1}=2$ and $p_{\mathcal{M}}(3)=q_{1}\binom{3}{2}+q_{2}\binom{3}{3}>3$.

When the Main Theorem Does Not Apply: An Example

Let $\mathcal{M}=(\{P\}, \Sigma)$ with $\Sigma=\{P(x, y, y) \approx x, P(x, x, y) \approx y\}$. $X=\{x, y, z\}$ is large enough for \mathcal{M}.

- $d=2$ and $r=2$; say, $t_{1}:=P(x, y, x), t_{2}:=P(x, y, z)$.
- $p_{\mathcal{M}}(2)=q_{1}=2$ and $p_{\mathcal{M}}(3)=q_{1}\binom{3}{2}+q_{2}\binom{3}{3}>3$.
- SubalsTmil \Rightarrow if \mathbf{A} is a random finite model of \mathcal{M}, then
- with probability $1, \mathbf{A}$ has no proper subalgebras of size ≥ 3, but
- A has a 2-element subalgebra with probability $1-1 / e^{2}$.

When the Main Theorem Does Not Apply: An Example

Let $\mathcal{M}=(\{P\}, \Sigma)$ with $\Sigma=\{P(x, y, y) \approx x, P(x, x, y) \approx y\}$. $X=\{x, y, z\}$ is large enough for \mathcal{M}.

- $d=2$ and $r=2$; say, $t_{1}:=P(x, y, x), t_{2}:=P(x, y, z)$.
- $p_{\mathcal{M}}(2)=q_{1}=2$ and $p_{\mathcal{M}}(3)=q_{1}\binom{3}{2}+q_{2}\binom{3}{3}>3$.
- SubalsThim \Rightarrow if \mathbf{A} is a random finite model of \mathcal{M}, then
- with probability $1, \mathbf{A}$ has no proper subalgebras of size ≥ 3, but
- A has a 2-element subalgebra with probability $1-1 / e^{2}$.
- Theorem. With probability 1, a finite random model of \mathcal{M} is simple.

When the Main Theorem Does Not Apply: An Example

Let $\mathcal{M}=(\{P\}, \Sigma)$ with $\Sigma=\{P(x, y, y) \approx x, P(x, x, y) \approx y\}$. $X=\{x, y, z\}$ is large enough for \mathcal{M}.

- $d=2$ and $r=2$; say, $t_{1}:=P(x, y, x), t_{2}:=P(x, y, z)$.
- $p_{\mathcal{M}}(2)=q_{1}=2$ and $p_{\mathcal{M}}(3)=q_{1}\binom{3}{2}+q_{2}\binom{3}{3}>3$.
- Subalstim \Rightarrow if \mathbf{A} is a random finite model of \mathcal{M}, then
- with probability 1 , A has no proper subalgebras of size ≥ 3, but
- A has a 2-element subalgebra with probability $1-1 / e^{2}$.
- Theorem. With probability 1, a finite random model of \mathcal{M} is simple.
- Remark. This is true for all strong idempotent linear \mathcal{M}.

When the Main Theorem Does Not Apply: An Example

Let $\mathcal{M}=(\{P\}, \Sigma)$ with $\Sigma=\{P(x, y, y) \approx x, P(x, x, y) \approx y\}$. $X=\{x, y, z\}$ is large enough for \mathcal{M}.

- $d=2$ and $r=2$; say, $t_{1}:=P(x, y, x), t_{2}:=P(x, y, z)$.
- $p_{\mathcal{M}}(2)=q_{1}=2$ and $p_{\mathcal{M}}(3)=q_{1}\binom{3}{2}+q_{2}\binom{3}{3}>3$.
- Subalghim \Rightarrow if \mathbf{A} is a random finite model of \mathcal{M}, then
- with probability 1 , A has no proper subalgebras of size ≥ 3, but
- A has a 2-element subalgebra with probability $1-1 / e^{2}$.
- Theorem. With probability 1, a finite random model of \mathcal{M} is simple.
- Remark. This is true for all strong idempotent linear \mathcal{M}.
- Corollary. If $\mathbf{A}=\langle A ; P\rangle$ is a random finite alg with a Maltsev op P, then
- with probability 1, A is para primal with no proper subalg's of size ≥ 3;
- the probability that \mathbf{A} has a 2 -element affine subalgebra is $1-1 / \sqrt{e}$.

When the Main Theorem Does Not Apply: An Example

Let $\mathcal{M}=(\{P\}, \Sigma)$ with $\Sigma=\{P(x, y, y) \approx x, P(x, x, y) \approx y\}$. $X=\{x, y, z\}$ is large enough for \mathcal{M}.

- $d=2$ and $r=2$; say, $t_{1}:=P(x, y, x), t_{2}:=P(x, y, z)$.
- $p_{\mathcal{M}}(2)=q_{1}=2$ and $p_{\mathcal{M}}(3)=q_{1}\binom{3}{2}+q_{2}\binom{3}{3}>3$.
- Subalgimi \Rightarrow if \mathbf{A} is a random finite model of \mathcal{M}, then
- with probability 1 , A has no proper subalgebras of size ≥ 3, but
- A has a 2-element subalgebra with probability $1-1 / e^{2}$.
- Theorem. With probability 1, a finite random model of \mathcal{M} is simple.
- Remark. This is true for all strong idempotent linear \mathcal{M}.
- Corollary. If $\mathbf{A}=\langle A ; P\rangle$ is a random finite alg with a Maltsev op P, then
- with probability $1, \mathbf{A}$ is para primal with no proper subalg's of size ≥ 3;
- the probability that \mathbf{A} has a 2 -element affine subalgebra is $1-1 / \sqrt{e}$.
- Hence, the probability that a random finite algebra $\langle A ; P\rangle$ with a Maltsev operation P fails to have a majority term is $1-1 / \sqrt{e}$. This answers sceond question in slide l

Left To Do

Left To Do

Back to the general case:
Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ describe any (non-degenerate) strong, idempotent linear Maltsev condition.

Left To Do

Back to the general case:
Let $\mathcal{M}=(\mathcal{L}, \Sigma)$ describe any (non-degenerate) strong, idempotent linear Maltsev condition.

Problem

Find all random finite models of \mathcal{M} (up to term equivalence) which occur with positive probability.

