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Question

Suppose we are given two Maltsev conditions, Ĉ and C; say

Ĉ there exists a Maltsev term P;
i.e., a term P satisfying the
identities

x ≈ P(x, y, y), P(x, x, y) ≈ y;

C there exists H–M terms for
3-permutability; i.e., terms
P1,P2 satisfying the identities

x ≈ P1(x, y, y), P2(x, x, y) ≈ y,
P1(x, x, y) ≈ P2(x, y, y) back

or

Ĉ there exists a majority term m;
i.e., a term m satisfying the
identities

m(x, x, y) ≈ m(x, y, x) ≈
m(y, x, x) ≈ x;

C there exists a Maltsev term P.
back

Known: there exist finite algebras satisfying C in which Ĉ fails.

Question

How likely is it that Ĉ fails in a random finite algebra satisfying C?
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Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond’s.
They can be described by pairsM = (L,Σ) where
L is a finite algebraic language with arity(f ) ≥ 2 for all f ∈ L;
Σ is a finite system of idempotent, linear L-identities; here

idempotence: Σ |= f (x, . . . , x) ≈ x for all f ∈ L;
linearity: σ ≈ τ ∈ Σ⇒ σ, τ are linear L-terms, i.e., they contain at most
one operation symbol, and

Σ is non-degenerate, i.e., ∃ f ∈ L s.t. Σ 6|= f ≈ x for any variable x;
hence, in particular, Σ 6|= x ≈ y.

Example

For Ĉ = C: M =
(
{P}, {x ≈ P(x, y, y), P(x, x, y) ≈ y}

)
.

The Maltsev cond. det’d byM = (L,Σ) requires (for a variety or algebra):

CM For each symbol f ∈ L there exists a term f (in the language of the given
variety or algebra) such that the identities in Σ hold for these terms (in
the given variety or algebra).
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For Ĉ = C: M =
(
{P}, {x ≈ P(x, y, y), P(x, x, y) ≈ y}

)
.

The Maltsev cond. det’d byM = (L,Σ) requires (for a variety or algebra):

CM For each symbol f ∈ L there exists a term f (in the language of the given
variety or algebra) such that the identities in Σ hold for these terms (in
the given variety or algebra).

A. Szendrei (CU Boulder) Random Models May 2018 3 / 22



Strong Idempotent Linear Maltsev Conditions

We will restrict to (non-degenerate) strong idempotent linear Maltsev cond’s.
They can be described by pairsM = (L,Σ) where
L is a finite algebraic language with arity(f ) ≥ 2 for all f ∈ L;

Σ is a finite system of idempotent, linear L-identities; here
idempotence: Σ |= f (x, . . . , x) ≈ x for all f ∈ L;
linearity: σ ≈ τ ∈ Σ⇒ σ, τ are linear L-terms, i.e., they contain at most
one operation symbol, and

Σ is non-degenerate, i.e., ∃ f ∈ L s.t. Σ 6|= f ≈ x for any variable x;
hence, in particular, Σ 6|= x ≈ y.

Example
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Random Algebras

If we want to ask a computer to ‘randomly choose’ an algebra,
we need to specify

1 the number of elements: n [finite]; and
2 the language L′ = {F1, . . . ,Fr} (Fi is mi-ary) [also finite].

Therefore, our algebras will have the form

A = 〈[n],L′〉 = 〈 [n]; F1, . . . ,Fr 〉 ([n] := {0, 1, . . . , n− 1}).

Example
To choose a random algebra A = 〈[4]; ∗, †〉 (∗ binary, † unary),
we have to randomly fill out the operation tables for ∗ and †:

∗ 0 1 2 3
0

0 1 3 1

1

3 1 3 0

2

1 1 2 1

3

2 0 1 0

†
0

3

1

1

2

0

3

0

(4(4
2) · 44 ≈ 1012

possibilities)
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Probability

Given n and L′, it is reasonable to assume:

each choice 0, . . . , n− 1 is equaly likely for
every entry of every operation table, and

the choices for different entries are independent.

Therefore, all algebras 〈[n];L′〉 have the same
probability to occur (uniform distribution).

all algebras 〈[n];L′〉
probability space:

those with property P

Definition
Given a property, P, of algebras, we will say that a random finite L′-algebra
has property P with probability p, if

p = lim
n→∞

|{A = 〈[n],L′〉 : A has property P}|
|{A = 〈[n],L′〉 : A arbitrary}|

=: Pr∞(P).
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Back to Our Question

Given: strong idempotent linear Maltsev conditions C and Ĉ such that there
exists a finite algebra satisfying C in which Ĉ fails

Question

How likely is it that Ĉ fails in a random finite algebra satisfying C?

Precise interpretation:

For every choice of a finite language L′ for our random algebra,

find

Pr∞(¬Ĉ | C)

= lim
n→∞

|{A = 〈[n],L′〉 : A satisfies C&¬Ĉ}|
|{A = 〈[n],L′〉 : A satisfies C}|

=
Pr∞(¬Ĉ& C)

Pr∞(C)
(if both exist and Pr∞(C) 6= 0)

all algebras 〈[n];L′〉
those where C holds

those where Ĉ fails
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Pr∞(¬Ĉ | C)

= lim
n→∞

|{A = 〈[n],L′〉 : A satisfies C&¬Ĉ}|
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A. Szendrei (CU Boulder) Random Models May 2018 6 / 22



Back to Our Question

Given: strong idempotent linear Maltsev conditions C and Ĉ such that there
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Applying Murskiı̌’s Theorem

Murskiı̌’s Theorem (1975)
If L′ contains a symbol of arity ≥ 2, then, with probability 1,
a random finite L′-algebra A = 〈A;L′〉 is idemprimal, i.e.

(ip) every idempotent operation g : Ak → A (k ≥ 1) is a term operation of A.

Hence, if L′ contains a symbol of arity ≥ 2, then

Pr∞(C& Ĉ) = 1, so Pr∞(¬Ĉ | C) =
Pr∞(¬Ĉ& C)

Pr∞(C)
=

0
1

= 0.

On the other hand, if all symbols in L′ have arity 1, then

Pr∞(¬Ĉ | C) =

{
1 if C is trivial (so Ĉ is nontrivial),
undefined if C is nontrivial.
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Pr∞(¬Ĉ& C)
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Back to Our Question: Another Interpretation

Given: strong idempotent linear Maltsev conditions C and Ĉ such that there
exists a finite algebra satisfying C in which Ĉ fails

Question

How likely is it that Ĉ fails in a random finite algebra satisfying C?

‘Minimalist’ interpretation:

Let C = CM withM = (L,Σ).

Restrict to random algebras which satisfy CM
with their basic op’s; i.e., restrict to
random L-algebras that are models of Σ︸ ︷︷ ︸

random models of M

.

all algebras 〈[n];L〉
models ofM

those where Ĉ fails

Note: Pr∞(model ofM) = 0
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Back to Our Question: Another Interpretation (Cont’d)

‘Minimalist’ interpretation:

Let C = CM withM = (L,Σ).

Restrict to random algebras which satisfy CM
with their basic op’s; i.e., restrict to
random L-algebras that are models of Σ︸ ︷︷ ︸

random models of M

.

our new probability space:

models 〈[n];L〉 ofM

models where Ĉ fails
Find

Pr∞M(¬Ĉ)
:= lim

n→∞

|{A = 〈[n],L〉 : A is a model ofM where Ĉ fails}|
|{A = 〈[n],L〉 : A is a model ofM}|

.
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:= lim

n→∞

|{A = 〈[n],L〉 : A is a model ofM where Ĉ fails}|
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Strategy for Finding These Probabilities

Let us fixM = (L,Σ).
To find Pr∞M(�) for various properties �, we need to

understand the models ofM well enough so that we can

count the models with property �.

For this, we will discuss
1 how to find all linear identities that are consequences of Σ; equivalently,

how to find linear L-terms that are ‘essentially different’ (modulo Σ);
2 how to use a complete set of ‘essentially different’ linear L-terms to

construct the operations of all random models ofM from ‘small
independent pieces’.

We will apply these observations

(A) to characterize whenM has the property that, with probability 1, the
random models ofM are idemprimal; and

(B) to discuss some cases when this criterion does not apply.
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Linear Consequences of Σ

Definitions
X is large enough forM if X contains all variables occurring in Σ,
|X| ≥ 2, and |X| ≥ arity(f ) for all f ∈ L.

For X large enough forM, let
M
≈X (or

M
≈) denote the least equivalence

relation on the set of linear L-terms in variables from X which contains
Σ and is closed under variable substitution.

Kelly’s Completeness Theorem
(Recall: by our assumptions, Σ 6|= x ≈ y.) If X is large enough forM, then
for any linear L-terms s, t in variables from X,

Σ |= s ≈ t ⇐⇒ s
M
≈X t.
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Permuting variables

LetM = (L,Σ) be as before, let X be large enough forM.

Easy Facts
Sym(X) acts on the set of linear L-terms with variables in X by

γ · s(x1, . . . ) := s
(
γ(x1), . . .

)
for all γ ∈ Sym(X),

and on the set of their equivalence classes [s] := s/
M
≈X by

γ · [s(x1, . . . )] :=
[
s
(
γ(x1), . . .

)]
for all γ ∈ Sym(X).

For every
M
≈X-block C = [s],

all terms in C have the same set XC (⊆ X) of essential variables (mod Σ);
C contains a term t whose variables are all essential;
Sym(XC) has a unique subgroup GC = Gt (= symmetry group of C or t)
such that for all γ ∈ Sym(X),

γ · C = C⇐⇒ Σ |= s ≈ γ · s⇐⇒ γ(XC) = XC and γ�XC ∈ GC.
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Example: Linear Consequences of Σ

GCiXCi

{x} {id}

{x, y} {id}

M = (L,Σ) with L := {P1,P2} and
Σ := {x ≈ P1(x, y, y), P1(x, x, y) ≈ P2(x, y, y), P2(x, x, y) ≈ y,

P1(x, y, z) ≈ P1(x, z, y), P2(x, y, x) ≈ P2(y, x, y)}.

X := {x, y, z} is large enough forM.

Equiv classes of
M
≈, arranged in Sym(X)-orbits:

C0: x
M
≈ P1(x, x, x)

M
≈ P2(x, x, x)

M
≈ P1(x, y, y)

M
≈ P1(x, z, z)

M
≈ P2(y, y, x)

M
≈ P2(z, z, x)

−: y ≈ . . .
−: z ≈ . . .

back

C1: P1(x, x, y)
M
≈ P2(x, y, y)

M
≈ P1(x, y, x)

−: P1(y, y, x)
M
≈ P2(y, x, x)

M
≈ P1(y, x, y)

...
−: P1(z, z, y)

M
≈ . . . back
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Example: Constructing Random Models ofM

M = (L,Σ), Σ := {x ≈ P1(x, y, y), P1(x, x, y) ≈ P2(x, y, y), P2(x, x, y) ≈ y,
P1(x, y, z) ≈ P1(x, z, y), P2(x, y, x) ≈ P2(y, x, y)}

A = 〈A; P1,P2〉 is a model ofM iff P1,P2 have the foll. form (a, b, c distinct)

A3A P1 A3 AP2

aaa

abb

abc

aba

aab

aaa

bba

abc

aba

abb

a

a
h3

h3(abc) = h3(acb)

h1 arb.

a

a
h4 arb.

ab h2

h2(ab) = h2(ba)

ab
h1 arb.h1 arb.

Also: h1, h2, h3, h4 are independent. check check
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Constructing Random Models ofM

LetM = (L,Σ) be as before the ex’s, and X = {x1, . . . , xm} large enough.
For any set A and k ≥ 1, let A(k) := {(a1, . . . , ak) ∈ Ak : a1, . . . , ak distinct}.

Fix ti = ti(x1, . . . , xdi) (1 ≤ i ≤ r) so that they form a maximal family of
essentially different, nontrivial linear L-terms, i.e.,

[t1], . . . , [tr], [x1] is a transversal for the Sym(X)-orbits of the
M
≈X-blocks.

Assume also (WLOG) that ti depends on all di variables (mod Σ), and

(2 ≤) d := d1 = · · · = d` < d`+1 ≤ · · · ≤ dr.

Theorem
For any set A, the map A 7→ (ti�A(di))1≤i≤r is a bijection between the models
ofM on A and the r-tuples (hi)1≤i≤r of functions hi : A(di) → A such that hi is
invariant under all permutations π ∈ G[ti] of its variables.

The functions in each such r-tuple (hi)1≤i≤r are independent; moreover

for every i, we have hi =
⋃
{hi�D(di) : D ∈

(A
di

)
} where the functions

hi�D(di) (D ∈
(A

di

)
) are independent.
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Characterization of Idemprimality

Main Theorem
The following conditions onM are equivalent:

(1) With probability 1, a random finite model ofM is idemprimal.

(2) With probability 1, a random finite model ofM has no 2-element
subalgebras.

(3) There exist either
three essentially different nontrivial binary terms forM, or
two essentially different nontrivial binary terms, s and t, forM such that
Σ 6|= s(x, y) ≈ s(y, x).

backConsequently:

IfM satisfies (3), then Pr∞M(¬Ĉ) = 0 for every strong idempotent linear
Maltsev condition Ĉ.

In particular, ifM is the system for congr 3-permutability, then the
probability that a random finite model ofM has no Maltsev term is 0.
This answers first question in Slide 1
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Subalgebras

Recall: ti = ti(x1, . . . , xdi) (1 ≤ i ≤ r) is a max family of essentially different,
nontrivial linear L-terms s.t. each ti depends on all di variables (mod Σ), and
(2 ≤) d := d1 = · · · = d` < d`+1 ≤ · · · ≤ dr.

For k ≥ d let pM(k) :=

r∑
i=1

qi

(
k
di

)
where qi = |Sym(x1, . . . , xdi) : G[ti]|.

Theorem
If A is random finite model ofM, then every subset of A of size less than d is
a subalgebra of A. Moreover,

(i) Pr∞M(A has no proper subalg of size ≥ d + 2) = 1;

(ii) Pr∞M(A has no proper subalg of size d + 1) = 1 if pM(d + 1) > d + 1;

(iii) Pr∞M(A has no proper subalg of size d) =


1 if pM(d) > d,
e−dd/d! if pM(d) = d,
0 if pM(d) < d.

back back
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Proof of the Main Theorem

(1)
easy
=⇒ (2)

SubalgThm
⇐⇒ d = 2 and pM(2) > 2

easy⇐⇒ (3) check

=⇒ with probab 1, no proper subalg’s of size ≥ 3 either

(2) =⇒ (1): Let A be a random finite model ofM s.t. (2) holds.
For (1), it suffices to show that, with probability 1,

A has no nonidentity automorphisms, and
A has no compatible crosses Xu := (A× {u}) ∪ ({u} × A) (u ∈ A).

Let A = [n] and � := t1�A(2).

Let σ ∈ Sym(A), σ 6= id; say σ(a) = b 6= a. Then

Pr
(
σ ∈ Aut(A)

)
≤ Pr

(
σ(a � x) = b � σ(x) for all x 6= a, b

)
≤
(

1
n

)n−2

.

Hence,
Pr
(
A has a nonidentity automorphism

)
≤ n!

(1
n

)n−2 n→∞−→ 0.
Similar, using that Xu compatible implies:

u � x = u for all x 6= u or x � u = u for all x 6= u.
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When the Main Theorem Does Not Apply: An Example

LetM = ({P},Σ) with Σ = {P(x, y, y) ≈ x, P(x, x, y) ≈ y}.
X = {x, y, z} is large enough forM.

d = 2 and r = 2; say, t1 := P(x, y, x), t2 := P(x, y, z).

pM(2) = q1 = 2 and pM(3) = q1
(3

2

)
+ q2

(3
3

)
> 3.

SubalgThm ⇒ if A is a random finite model ofM, then
with probability 1, A has no proper subalgebras of size ≥ 3, but
A has a 2-element subalgebra with probability 1− 1/e2.

Theorem. With probability 1, a finite random model ofM is simple.

Remark. This is true for all strong idempotent linearM.

Corollary. If A=〈A; P〉 is a random finite alg with a Maltsev op P, then
with probability 1, A is para primal with no proper subalg’s of size ≥ 3;
the probability that A has a 2-element affine subalgebra is 1− 1/

√
e.

Hence, the probability that a random finite algebra 〈A; P〉 with a Maltsev
operation P fails to have a majority term is 1− 1/

√
e.

This answers second question in Slide 1
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Left To Do

Back to the general case:

LetM = (L,Σ) describe any (non-degenerate) strong, idempotent linear
Maltsev condition.

Problem
Find all random finite models ofM (up to term equivalence) which occur
with positive probability.
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