Review for Exam 2

1. In each part of the following problem, ESTIMATE to determine whether the first quantity is less than or greater than the second. EXPLAIN briefly your steps.
(a) $161 \cdot 201 ; 32,000$ Greater: $161 \cdot 201>160 \cdot 200=32,000$
(b) $29,331 \div 28 ; 1,000$ Greater: $29331 \div 28>28000 \div 28=1,000$
(c) $29,331 \div 31$; 1,000 Less: $29331 \div 31<31000 \div 31=1,000$
(d) $334 \cdot 301 ; 100,000$ Greater: $334 \cdot 301>334 \cdot 300=100,200$
(e) $8387 \div 1777$; 5 Less: $8387 \div 1777<8500 \div 1700=5$
(f) $998 \cdot 1002 ; 1000^{2}$ Less: $998 \cdot 1002=(1000-2)(1000+2)=1000^{2}-2^{2}<1000^{2}$
2. Use front end estimation to approximate each of the following sums to the nearest dollar. Explain your work.

$\$ 3.41$	$\$ 2.15$	$\$ 11.04$	$\$ 3.41$	$\$ 2.15$
$\$ 2.63$	$\$ 1.17$	$\$ 0.31$	$\$ 8.23$	$\$ 0.20$
$\$ 0.49$	$\$ 3.67$	$\$ 2.36$	$\$ 3.21$	$\$ 10.74$
$\$ 1.13$	$\$ 0.17$	$\$ 0.11$	$\$ 3.21$	$\$ 0.33$
$\$ 0.63$	$\$ 2.88$	$\$ 0.31$	$\$ 1.77$	$\$ 12.20$
$\$ 1.11$	$\$ 7.97$	$\$ 2.22$	$\$ 1.23$	$\$ 10.00$
$+\$ 0.12$	$+\underline{\$ 4.77}$	$+\$ 33.11$	$+\$ 8.88$	$+\$ 42.54$
$\approx \$ 10$.	$\approx \$ 23$.	$\approx \$ 49$.	$\approx \$ 30$.	$\approx \$ 78$.

3. Here are snowfall amounts in inches, for each of the 12 weeks of winter, in Frostbite Falls, Minnesota: 9, 9, 32, 31, 28, 11, 10, 11, 30, 8, 12, 11. Use clustering to estimate the total winter snowfall in Frostbite Falls. About $8 \cdot 10+4 \cdot 30=200$ inches.
4. Evaluate each of the following Roman numerals:
(a) MCMLXVII 1967
(b) MMMCDXLIX 3449
(c) CMXCIX 999
(d) MMMCCCXXXIII 3333
5. Express each of the following as a Roman numeral:
(a) 3097
(b) 949
(c) 494
(d) 2222
MMMXCVII
CMXLIX
CDXCIV
MMCCXXII
6. Evaluate each of the following Mayan numerals:
(a)

(b) $\xlongequal[119]{\overline{0000}}$
(c) $\xlongequal[259]{\rightleftharpoons}$
(d) $\underset{7300}{\underset{~(1)}{\longrightarrow}}$
7. Express each of the following as a Mayan numeral:
(a) 20
(b) 361
(c) 3666 (hint: $3666=10 \cdot 18 \cdot 20+3 \cdot 20+6$)

(d) 252
(e) 129
(f) 7313 (hint: $7313=1 \cdot 20 \cdot 18 \cdot 20+5 \cdot 20+13$)

8. Evaluate each of the following Babylonian numerals:

(b) $<\boldsymbol{\nabla}<\boldsymbol{\gamma} 671$
(c) $\boldsymbol{\nabla} \boldsymbol{\nabla}<\boldsymbol{\nabla} 7802$
9. Express each of the following as a Babylonian numeral:
(a) 20
(b) 361
(c) 3606 (hint: $3666=60^{2}+60+6$)
\ll

$\boldsymbol{\nabla} \quad \boldsymbol{\nabla} \nabla \boldsymbol{\nabla} \nabla \boldsymbol{\nabla}$
(d) 252
(e) 129
(f) 7313 (hint: $7313=2 \cdot 60^{2}+60+53$)

$\nabla \nabla \nabla \nabla<\nabla \nabla$

10. Convert each of the following numbers to base ten.
(a) $20_{\text {seven }}$
(b) $100110_{\text {two }}$
(c) $101_{\text {nine }}$
(d) $E E_{\text {twelve }}$
14
11. Convert each of the following base ten numbers to the indicated base.
(a) $40_{\text {ten }}$: base two
(b) $1110_{\text {ten }}:$ b
c) $567_{\text {ten }}$: base four
(d) $242_{\text {ten }}$: base twelve $101000_{\text {two }}$
$20313_{\text {four }}$ $182_{\text {twelve }}$
12. Write down, in the same base as is given, the number that's one larger than each of the following:
(a) $99999_{\text {ten }}$
(b) $111111_{\text {two }}$
(c) $44444_{\text {five }}$
(d) EEEEE twelve $100000_{\text {ten }}$
$1000000_{\text {two }}$ $100000_{\text {five }}$ $100000_{\text {twelve }}$
13. The odometer on your Math 1110 instructor's car records mileage in base six. (Well OK not REALLY, but let's pretend.) What did the odometer read just before it read $3,000,000$? At that point (just before $3,000,000$), how many miles (in base ten) had this car traveled? Hint: $3 \cdot 6^{6}=139968$. It read $2,555,555$, which means $3 \cdot 6^{6}-1=139967$ miles
14. Suppose we want to estimate $x \div y$. If we round x down and y up, will our estimate be lower than the actual value, or higher, or might it be either? It will be lower: rounding x down gives a smaller quotient, and rounding y up does the same thing.
15. Perform each of the following additions or subtractions.

$$
\begin{array}{rr}
1101_{\text {two }} \\
+\frac{101_{\text {two }}}{10010_{\text {two }}}
\end{array}-\frac{737_{\text {nine }}}{\frac{448_{\text {nine }}}{278_{\text {nine }}}}+\frac{222_{\text {four }}}{\frac{333_{\text {four }}}{1221_{\text {four }}}}-\frac{123_{\text {four }}}{33_{\text {four }}} \begin{array}{r}
900_{\text {four }}
\end{array}+\frac{\mathrm{TE} 90_{\text {twelve }}}{1807 \mathrm{E}_{\text {twelve }}}
$$

16. Compute each of the following.
(a) $\left({ }^{-} 2\right)^{8} \div\left({ }^{-} 2\right)^{3}={ }^{-} 32$
(b) ${ }^{-} 2^{4}={ }^{-} 16$
(c) $\left({ }^{-} 2\right)^{4}=16$
(d) $\left({ }^{-} 1\right)^{10101}={ }^{-} 1$
17. Evaluate each of the following, or explain why it can't be evaluated.
(a) $\left({ }^{-} 10 \div 5\right)\left({ }^{-} 4\right) \div\left({ }^{-} 2\right)={ }^{-} 4$
(b) $\left({ }^{-} 10 \div 5\right)\left({ }^{-} 4\right) \div(-2-(-2))$
can't be done (division by zero)
(c) $\left.\right|^{-} 5|\cdot|{ }^{-} 12\left|-\left.\right|^{-} 2\right|=58$
(d) $\left({ }^{-} 10 \div{ }^{-} 5\right)(-4) \div(2-(-2))={ }^{-} 2$
18. Evaluate each sum or product by first grouping together compatible numbers.
(a) $39+41+22+12+61+59+78+4$
(b) $2 \cdot 3 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 7 \cdot 5 \cdot 5$ $=(39+61)+(41+59)+(22+78)+12+4=316=(2 \cdot 5) \cdot(2 \cdot 5) \cdot(2 \cdot 5) \cdot(2 \cdot 5) \cdot 3 \cdot 7=210,000$
19. Evaluate each sum or product by trading off.
(a) $1175+2030=1200+2005=3205$
(b) $94+2706=100+2700=2800$
(c) $16 \cdot 18=8 \cdot 36=4 \cdot 72=2 \cdot 144=288$
(c) $12 \cdot 85=6 \cdot 170=3 \cdot 340=1020$
20. Answer each of the following without actually performing the division. Explain your answers in all cases.
(a) Is 23231 divisible by 23 ?
(b) Is $17!+3$ divisible by 4 ?
no; $23 \mid 2323$ so $23 \mid 23230$, but $23 \nmid 1$
no; $4 \mid 17$! but $4 \nless 3$
(c) Is 380,019 divisible by 19 ?
(d) Suppose n is even. Is $3 n+5$ divisible by 6 ? yes; $19 \mid 38$ so $19 \mid 380000$; also, $19 \mid 19$, so $19 \mid 380019$ no; $6 \mid 3 n$ but $6 \nless 5$
21. Use divisibility tests to determine whether each of the following numbers is divisible by $3,4,6,9,11$.
(a) 20,394 by $3,6,9,11$ only
(b) 362,880 by $3,4,6,9$ only
(c) $1,393,194$ by $3,6,11$ only
(d) $111,111,111$ by 3,9 only
(e) $1,111,111,111$ by 11 only
22. (a) If $a \nmid b$ and $a \nmid c$, is it necessarily true that $a \nmid(b+c)$? Explain. No: e.g. $5 \nmid 7$ and $5 \nmid 8$, but $5 \mid(7+8)$
(b) If $a \mid c$ and $b \mid c$, is it always true that $a b \mid c$? Explain. No: e.g. $3 \mid 12$ and $6 \mid 12$, but $3 \cdot 6 \nmid 12$
23. Fill in the blank in the number $987,6 \quad 4$ so that the result is divisible by:
(a) 4987624
(b) 6987624
(c) 9987624
(d) 11987624
24. Using divisibility tests only, explain why 9,790 is divisible by: (a) 2 because $2 \mid 0$; (b) 5 because $5 \mid 0$; (c) 11 because $11 \mid(9-7+9-0)=11$; (d) 110 because $2|9790,5| 9790$, $11 \mid 9790,110=2 \cdot 5 \cdot 11$, and 2,5 , and 11 are relatively prime.
