Review for Exam 2

1. In each part of the following problem, ESTIMATE to determine whether the first quantity is less than or greater than the second. EXPLAIN briefly your steps.
(a) $161 \cdot 201 ; 32,000$
(b) $29,331 \div 28 ; 1,000$
(c) $29,331 \div 31 ; 1,000$
(d) $334 \cdot 301 ; 100,000$
(e) $8387 \div 1777 ; 5$
(f) $998 \cdot 1002 ; 1000^{2}$
2. Use front end estimation to approximate each of the following sums to the nearest dollar. Explain your work.

$\$ 3.41$	$\$ 2.15$	$\$ 11.04$	$\$ 3.41$	$\$ 2.15$
$\$ 2.63$	$\$ 1.17$	$\$ 0.31$	$\$ 8.23$	$\$ 0.20$
$\$ 0.49$	$\$ 3.67$	$\$ 2.36$	$\$ 3.21$	$\$ 10.74$
$\$ 1.13$	$\$ 0.17$	$\$ 0.11$	$\$ 3.21$	$\$ 0.33$
$\$ 0.63$	$\$ 2.88$	$\$ 0.31$	$\$ 1.77$	$\$ 12.20$
$\$ 1.11$	$\$ 7.97$	$\$ 2.22$	$\$ 1.23$	$\$ 10.00$
$+\underline{\$ 0.12}$	$+\underline{\$ 4.77}$	$+\underline{\$ 33.11}$	$+\underline{\$ 8.88}$	$+\underline{\$ 42.54}$

3. Here are snowfall amounts in inches, for each of the 12 weeks of winter, in Frostbite Falls, Minnesota: 9, 9, 32, 31, 28, 11, 10, 11, 30, 8, 12, 11. Use clustering to estimate the total winter snowfall in Frostbite Falls.
4. Evaluate each of the following Roman numerals:
(a) MCMLXVII
(b) MMMCDXLIX
(c) CMXCIX
(d) MMMCCCXXXIII
5. Express each of the following as a Roman numeral:
(a) 3097
(b) 949
(c) 494
(d) 2222
6. Evaluate each of the following Mayan numerals:
(a)

(b)
$\stackrel{0000}{\Longrightarrow}$
$\stackrel{\bullet 0}{\rightleftharpoons}$
(c) $\stackrel{\text { •000 }}{=}$
(d) $\stackrel{1}{\infty}$
7. Express each of the following as a Mayan numeral:
(a) 20
(b) 361
(c) 3666 (hint: $3666=10 \cdot 18 \cdot 20+3 \cdot 20+6$)
(d) 252
(e) 129
(f) 7313 (hint: $7313=1 \cdot 20 \cdot 18 \cdot 20+5 \cdot 20+13$)
8. Evaluate each of the following Babylonian numerals:
(a) $\langle\langle\nabla \nabla \nabla \nabla \nabla \nabla \nabla$
(b) $<\nabla<\nabla$
(c) $\nabla \nabla<\nabla \nabla$
9. Express each of the following as a Babylonian numeral:
(a) 20
(b) 361
(c) 3666 (hint: $3666=60^{2}+60+6$)
(d) 252
(e) 129
(f) 7313 (hint: $7313=2 \cdot 60^{2}+60+53$)
10. Convert each of the following numbers to base ten.
(a) $20_{\text {seven }}$
(b) $100110_{\text {two }}$
(c) $101_{\text {nine }}$
(d) $\mathrm{EE}_{\text {twelve }}$
11. Convert each of the following base ten numbers to the indicated base.
(a) $40_{\text {ten }}$: base two
(b) $1110_{\text {ten }}$: base five (c) $567_{\text {ten }}$: base four
(d) $242_{\text {ten }}$: base twelve
12. Write down, in the same base as is given, the number that's one larger than each of the following:
(a) $99999_{\text {ten }}$
(b) $111111_{\text {two }}$
(c) $44444_{\text {five }}$
(d) EEEEE $_{\text {twelve }}$
13. The odometer on your Math 1110 instructor's car records mileage in base six. (Well OK not REALLY, but let's pretend.) What did the odometer read just before it read $3,000,000$? At that point (just before $3,000,000$), how many miles (in base ten) had this car traveled? Hint: $3 \cdot 6^{6}=139968$.
14. Suppose we want to estimate $x \div y$. If we round x down and y up, will our estimate be lower than the actual value, or higher, or might it be either?
15. Perform each of the following additions or subtractions.

$$
\begin{array}{rrrrr}
1101_{\text {two }} & 737_{\text {nine }} & \begin{array}{l}
222_{\text {four }} \\
101_{\text {two }}
\end{array} & -\underline{448_{\text {nine }}} & +\underline{333_{\text {four }}}
\end{array} \quad-\underline{123_{\text {four }}} \quad \begin{array}{r}
90 \mathrm{TE}_{\text {twelve }} \\
\text { fE } 90_{\text {twelve }}
\end{array}
$$

16. Compute each of the following.
(a) $\left({ }^{-} 2\right)^{8} \div\left({ }^{-} 2\right)^{3}$
(b) ${ }^{-} 2^{4}$
(c) $\left({ }^{-} 2\right)^{4}$
(d) $\left({ }^{-} 1\right)^{10101}$
17. Evaluate each of the following, or explain why it can't be evaluated.
(a) $\left({ }^{-} 10 \div 5\right)(-4) \div\left({ }^{-} 2\right)$
(b) $\left({ }^{-} 10 \div 5\right)(-4) \div\left(-2-\left({ }^{-} 2\right)\right)$
(c) $\left.\right|^{-} 5|\cdot|^{-} 12\left|-\left.\right|^{-} 2\right|$
(d) $\left({ }^{-} 10 \div-5\right)(-4) \div(2-(-2))$
18. Evaluate each sum or product by first grouping together compatible numbers.
(a) $39+41+22+12+61+59+78+4$
(b) $2 \cdot 3 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 7 \cdot 5 \cdot 5$
19. Evaluate each sum or product by trading off.
(a) $1175+2030$
(b) $94+2706$
(c) $16 \cdot 18$
(d) $12 \cdot 85$
20. Answer each of the following without actually performing the division. Explain your answers in all cases.
(a) Is 23,231 divisible by 23 ?
(b) Is $17!+3$ divisible by 4 ?
(c) Is 380,019 divisible by 19 ?
(d) Suppose n is even. Is $3 n+5$ divisible by 6 ?
21. Use divisibility tests to determine whether each of the following numbers is divisible by $3,4,6,9,11$.
(a) 20,394
(b) 362,880
(c) $1,393,194$
(d) $111,111,111$
(e) $1,111,111,111$
22. (a) If $a \nmid b$ and $a \nmid c$, is it necessarily true that $a \nmid(b+c)$? Explain.
(b) If $a \mid c$ and $b \mid c$, is it always true that $a b \mid c$? Explain.
23. Fill in the blank in the number 987,6 \qquad 4 so that the result is divisible by:
(a) 4
(b) 6
(c) 9
(d) 11
24. Using divisibility tests only, explain why 9,790 is divisible by: (a) 2 ; (b) 5 ; (c) 11 ;
(d) 110 .
