MATH 4510: Review for Final Exam

1. Let U be a uniform random variable on the interval $(1,3)$. Let $X=\ln (U)$. Find the probability density function of X and compute the probability $P(X \leq 1)$.

We compute $F_{X}(x)=P(X \leq x)=P(\ln U \leq x)=P\left(U \leq e^{x}\right)=\frac{e^{x}-1}{3-1}$ for $0 \leq x \leq \ln 3$. So, the probability density function of X is

$$
f(x)=\frac{\mathrm{d}}{\mathrm{~d} x} F(x)=\left\{\begin{array}{ll}
\frac{e^{x}}{2} & 0<x<\ln 3 \\
0 & \text { otherwise }
\end{array} .\right.
$$

So, $P(X \leq 1)=\int_{0}^{1} f(x) \mathrm{d} x=\left.\frac{e^{x}}{2}\right|_{0} ^{1}=\frac{e-1}{2}$.
2. The random variables X and Y are jointly continuous with joint probability density function $f(x, y)=c x y$ for $0<x, y<1$ and $f(x, y)=0$ otherwise. Find the constant c and compute the marginal probability density functions f_{X} and f_{Y}. Find the conditional probability density function of X given that $Y=y$. Find $P(X Y \leq 0.5)$.

We have that $1=\int_{0}^{1} \int_{0}^{1} c x y \mathrm{~d} x \mathrm{~d} y=\frac{c}{4}$, so that $c=4$. We compute:

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{1} 4 x y \mathrm{~d} y=2 x \text { for } 0<x<1 \\
f_{Y}(y) & =\int_{0}^{1} 4 x y \mathrm{~d} x=2 y \text { for } 0<y<1, \text { and } \\
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f_{Y}(y)}=\frac{4 x y}{2 y}=2 x \text { for } 0<x<1
\end{aligned}
$$

Finally,

$$
\begin{aligned}
P(X Y \leq 0.5) & =\iint_{x y \leq 0.5} 4 x y \mathrm{~d} A=\int_{0}^{0.5} \int_{0}^{1} 4 x y \mathrm{~d} y \mathrm{~d} x+\int_{0.5}^{1} \int_{0}^{\frac{1}{2 x}} 4 x y \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{0.5} 2 x \mathrm{~d} x+\int_{0.5}^{1} \frac{2 x}{4 x^{2}} \mathrm{~d} x=\left.x^{2}\right|_{0} ^{0.5}+\left.\frac{\ln x}{2}\right|_{0.5} ^{1}=\frac{1}{4}+\frac{\ln 2}{2}
\end{aligned}
$$

Aside: We see that $f(x, y)=f_{X}(x) f_{Y}(y)$, so that X and Y are independent, so we could have instead computed $f_{X \mid Y}$ by noting that $f_{X \mid Y}(x \mid y)=f_{X}(x)$ when X and Y are independent.
3. A coin that lands heads with probability p is flipped n times. Let X be the number of heads and Y be the number of tails. Compute the correlation coefficient $\rho(X, Y)$.

We have that X and Y are both binomial with parameters n and p, so if we let $\sigma^{2}=n p(1-p)$, then $\operatorname{var}(X)=\operatorname{var}(Y)=\sigma^{2}$. Also, $X+Y=n$, so

$$
\operatorname{cov}(X, Y)=\operatorname{cov}(X, n-X)=\operatorname{cov}(X, n)-\operatorname{cov}(X, X)=-\operatorname{var}(X)=-\sigma^{2}
$$

Then,

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-\sigma^{2}}{\sigma^{2}}=-1
$$

Note that this is a special case of the fact that $\rho(X, Y)= \pm 1$ if and only if $Y=a X+b$ for some real numbers a and b with $a \neq 0$.
4. A fair die is rolled 7 times. Compute the expected number of different sides that the die will land on.

Let $X_{i}=1$ if the die lands on side i at least once and 0 otherwise. Let X be the number of different sides that the die lands on, so that $X=X_{1}+\cdots+X_{6}$. We compute

$$
E\left(X_{i}\right)=P\left(X_{i}=1\right)=1-P(\text { no roll lands on } i)=1-\left(\frac{5}{6}\right)^{7}
$$

Then, $E(X)=\sum_{i=1}^{6} E\left(X_{i}\right)=6\left(1-\left(\frac{5}{6}\right)^{7}\right)=4.326$.
5. Alex plans to complete ten tasks. She expects that she will spend an average of 12 minutes doing each task with a standard deviation of 4 minutes, independently of how long she takes on other tasks. Approximate the probability that it will take her no longer than 150 minutes to complete all of the tasks.

Let X_{i} be the amount of time that Alex spends on the i th task and $X=X_{1}+\cdots+X_{10}$ be the amount of time that Alex spends on all of the tasks combined. Then, by the Central Limit Theorem,
$P(X \leq 150)=P\left(\frac{X_{1}+\cdots+X_{10}-10 \cdot 12}{4 \cdot \sqrt{10}} \leq \frac{150-10 \cdot 12}{4 \cdot \sqrt{10}}\right) \approx P(Z \leq 2.37)=\Phi(2.37)=0.9911$.

