MATH 4510: Review for Midterm Exam

1. A die is rolled 5 times. How many different sequences of rolls are possible if:
(a) the die never lands on 4 ?

There are five sides other than 4 , so by the basic principle of counting, there are $5^{5}=3125$ different sequences.
(b) the die lands on one number at least twice?

There are 6^{5} different sequences, of which $\binom{6}{5} \cdot 5$! don't repeat any number, so there are $6^{5}-\binom{6}{5} \cdot 5!=7056$ different sequences with at least one number repeated.
2. Alice, Bob, and Carl each attempt to solve a crossword puzzle. There is a 70% chance that Alice can solve the puzzle without making a mistake, a 60% chance that Bob can, and a 85% chance that Carl can. What is the probability that at least one of them will solve the puzzle without making a mistake?

The simplest way to solve this is to note that

$$
P(\text { each one makes a mistake })=(1-0.7)(1-0.6)(1-0.85)=0.018
$$

so $P($ at least one doesn't make a mistake $)=1-P($ each one makes a mistake $)=0.982$. Alternatively, this can be done using Inclusion-Exclusion.
3. In a certain area, 4% of men and 0.5% of women are colorblind. If a given person is colorblind, what is the probability that that person is a man? (You may assume that the number of men and women in the area are equal.)

Let M be the event that the person is a man and C be the event that the person is colorblind. We will use Bayes' Rule in odds form. The prior odds are $\frac{P(M)}{P\left(M^{c}\right)}=1$ and the likelihood ratio is $\frac{P(C \mid M)}{P\left(C \mid M^{c}\right)}=\frac{0.04}{0.005}=8$. So, the posterior odds are $\frac{P(M \mid C)}{P\left(M \mid C^{c}\right)}=8 \cdot 1=8$. Then, $P(M \mid C)=\frac{8}{8+1}=0.89$.
4. A random variable X takes on the values $-1,3$, and 5 with probabilities $0.1,0.6$, and 0.3 respectively. Find the probability mass function and cumulative distribution function of X. Compute $E(X)$ and $\operatorname{var}(X)$.

The probability mass function of X is given by $p(-1)=0.1, p(3)=0.6, p(5)=0.3$, and $p(x)=0$ for all x other than $-1,3$, and 5 . The cumulative distribution function of X is given by

$$
F(x)= \begin{cases}0 & x<-1 \\ 0.1 & -1 \leq x<3 \\ 0.7 & 3 \leq x<5 \\ 1 & x \geq 5\end{cases}
$$

We compute

$$
\begin{aligned}
E(X) & =-1 \cdot 0.1+3 \cdot 0.6+5 \cdot 0.3=3.2 \text { and } \\
\operatorname{var}(X) & =E\left(X^{2}\right)-E(X)^{2}=\left((-1)^{2} \cdot 0.1+3^{2} \cdot 0.6+5^{2} \cdot 0.3\right)-(3.2)^{2}=2.76
\end{aligned}
$$

5. You roll a fair die twelve times. Find the probability that the die will land on six at least twice.

Let X be the number of rolls that land on six. Each roll independently has a probability of $\frac{1}{6}$ to land on six, so $X \sim B\left(12, \frac{1}{6}\right)$. Thus,

$$
P(X=k)=\binom{12}{k}\left(\frac{1}{6}\right)^{k}\left(\frac{5}{6}\right)^{12-k}
$$

We compute:

$$
P(X \geq 2)=1-P(X=0)-P(X=1)=1-\left(\frac{5}{6}\right)^{12}-12 \cdot \frac{1}{6} \cdot\left(\frac{5}{6}\right)^{11}=0.6186
$$

