
Note: A typo was corrected in the statement of computational problem #19.

1 True/False

Examples
True or false: Answers in blue. Justification is given unless the result is a direct
statement of a theorem from the book/homework or a straightforward calculation.

1. Let A be a 3×3 matrix. Then there is a pattern in A with precisely 2 inversions.
True.

2. Let A be a 3×3 matrix. Then there is a pattern in A with precisely 3 inversions.
True.

3. Let A be a 3×3 matrix. Then there is a pattern in A with precisely 4 inversions.
False. We’ll get the maximum number of inversions if we start in the bottom
left entry and move up one and right one for each successive entry (that is, along
the off-diagonal). In this case, we end up with only three inversions.

4. Let A be a 4× 4 matrix. Then all patterns of A have at most 5 inversions.
False. Again, we get the maximum by taking the pattern of all entries on the
off-diagonal, which has six inversions.

5. Let A be an n× n matrix. Then det(AT) = det(A).
True.

6. Let A be an n× n matrix. Then det(A−1) = det(A).
False. A correct statement is det(A−1) = 1

det(A)
.

7. Let B be an (n−1)×(n−1) matrix and A be the n×n matrix

[
1 0
0 B

]
(where the

0 entries represent zero matrices of the appropriate size). Then det(A) = det(B).
True. The only nonzero patterns are the ones with the 1 selected in the upper-
left, which will have the same signatures and products as the corresponding
patterns in B.

8. Let A be an n× n matrix. If rank(A) 6= n, then 0 is an eigenvalue of A.
True. These are equivalent conditions for A not being invertible.

9. Let A be the matrix of a rotation by angle θ. Then A has no real eigenvalues.
False. It’s often true, but consider for example θ = 180◦.
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10. If a matrix has no eigenvalues, then it has no eigenvectors.
True. (Since 7.5 isn’t on the exam, this question is talking about real eigenvalues.
As we saw in class, an n×n matrix over C always has n eigenvalues when counted
according to algebraic multiplicity).

11. Let A be an n×n matrix. Let ~e1 be an eigenvector of A with eigenvalue 1. Then
the first column of A is ~e1.
True, since A~e1 = ~e1 is the first column of A.

12. Let E2 be an eigenspace of the matrix A. Let ~v be a nonzero vector in E2. Then
A~v = 2~v.
True by definition of eigenspace.

13. Let λ be an eigenvalue of the matrix A. Then dim(Eλ) ≥ 1.
True.

14. Let A be a 4 × 4 matrix and let λ be an eigenvalue of A with algebraic multi-
plicity 3. Then the geometric multiplicity of λ cannot be 2.

False. Counterexamples are not hard to find. For example, consider


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 0

 .
15. Let A be a 4×4 matrix and let λ be an eigenvalue of A with algebraic multiplicity

3. Then the geometric multiplicity of λ cannot be 4.
True. The geometric multiplicity is always less than or equal to the algebraic
multiplicity.

16. If an n× n matrix has n distinct eigenvalues, then it has an eigenbasis.
True.

17. Let A be an n× n matrix. If tr(A) = det(A), then A is invertible.
False. For example, consider the zero matrix.

18. Let A be an n× n matrix. Then the eigenvalues of A are the diagonal entries of
A.
False. This is true if A is a triangular matrix, but not in general.

19. Let A be a lower triangular matrix with all entries on the diagonal distinct. Then
there is an eigenbasis for A.
True, since in this case we have distinct eigenvalues.

20. Let A be an n × n matrix with eigenvalues λ1, . . . , λn (repeated according to
algebraic multiplicity). Then det(A) = λ1 + · · ·+ λn.
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False. This is the formula for the trace; the determinant is the product of the
eigenvalues.

21. Let A be an n × n matrix with n distinct eigenvalues. If the largest of the
absolute values of the eigenvalues is 0.95, then lim

t→∞
At~v = ~0 for every vector ~v in

Rn.
True. As we’ve seen, this happens whenever the largest of the absolute values of
the eigenvalues is < 1.

22. If A is similar to B, then tr(A) = tr(B) and det(A) = det(B).
True.

23. If tr(A) = tr(B) and det(A) = det(B), then A is similar to B.
False. See Section 7.4, #38 for a counterexample.

2 Computational

1. Find det(A) where A =


1 0 0 2 1
0 4 0 3 6
0 9 7 0 3
0 −1 0 0 0
0 −2 −3 0 0

.

The only nonzero pattern P comes from selecting entries:


1 0 0 2 1

0 4 0 3 6

0 9 7 0 3

0 -1 0 0 0

0 −2 -3 0 0

.

This pattern has four inversions, so sgn(P ) = 1 and prod(P ) = (1)(−1)(−3)(3)(3) =
27, so det(A) = 27.

2. Let A =


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 and let P be the pattern indicated (by the boxed

entries). Find sgn(P ) and prod(P ) (but don’t bother actually multiplying out
the numbers in prod(P )).
This pattern has four inversions, so sgn(P ) = 1 and prod(P ) = (2)(8)(11)(13).
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3. Find det(A) where A =


1 2 3 4 5
0 2 1 3 9
0 0 −1 3 6
0 0 0 2 11
0 0 0 0 3

.

For a triangular matrix, the determinant is the product of the diagonal entries:
det(A) = (1)(2)(−1)(2)(3) = −12.

4. Find det(A) where A =


1 2 4 3
0 0 1 5
0 1 2 3
1 1 1 1

.

Use our row-reducing strategy (or any other method you may know) to show
that det(A) = −6.

5. Let A be an n× n matrix. Let ~v be an eigenvector of A with eigenvalue λ. Is ~v
an eigenvector of A2 + 3A? If so, what is its eigenvalue?
Observe that (A2 + 3A)~v = A2~v+ 3A~v = A(λ~v) + 3(λ~v) = (λ2 + 3λ)~v, so ~v is an
eigenvector of A2 + 3A with eigenvalue λ2 + 3λ.

6. Find all 2× 2 matrices for which

[
1
1

]
is an eigenvector with eigenvalue 3.

Consider the equation

[
a b
c d

] [
1
1

]
= 3

[
1
1

]
. Solving, we see b = 3 − a and

d = 3− c, so all matrices of the form

[
a 3− a
c 3− c

]
will have eigenvector

[
1
1

]
with

eigenvalue 3.

7. Let A be a 2× 2 matrix with tr(A) = 6 and det(A) = 5. Find the eigenvalues of
A.
Since this is 2 × 2, we can use the information given to completely determine
the characteristic polynomial (as opposed to the case in which the dimension is
higher, in which case we can only find some of the coefficients from this infor-
mation). Indeed, fA(λ) = λ2 − 6λ + 5 and factoring shows that the eigenvalues
of A are 1 and 5.

8. Let A be the matrix of an orthogonal projection onto a plane V in R3. Arguing
geometrically, find all real eigenvectors and eigenvalues of A and find an eigen-
basis if possible. (If not possible, explain why not.)
Any vector in the plane V will map to itself and so is an eigenvector with eigen-
value 1. Any vector on the line V ⊥ (it’s a line since we’re in a 3-dimensional
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space) will map to ~0 and so is an eigenvector with eigenvalue 0. We can find an
eigenbasis by picking two noncollinear vectors from V and one vector from V ⊥.
See also Example 1 of Section 7.3 on page 320.

9. Let A be the matrix of a vertical shear in R2. Arguing geometrically, find all
real eigenvectors and eigenvalues of A and find an eigenbasis if possible. (If not
possible, explain why not.)
A shear changes one coordinate of the vector (unless we are in the trivial case of
a shear of strength k = 0, in which case A = I2 and all vectors are eigenvectors)
but not the other, so a vector will be a scalar multiple of itself if and only if it is
unchanged by the shear. Thus, the vectors on the y-axis are eigenvectors with
eigenvalue 1. Since we can find only one linearly independent vector, we will not
have an eigenbasis.

Algebraically, this comes from the fact that the matrix

[
1 0
k 1

]
is not diagonal-

izable when k 6= 0.

10. Let A =

0 −1 0
1 0 0
0 0 1

. It can be shown that A is the matrix of a 90◦ counter-

clockwise rotation about the z-axis in R3. Arguing geometrically, find all real
eigenvectors and eigenvalues of A and find an eigenbasis if possible. (If not pos-
sible, explain why not.)
Any vector whose x and y coordinates are nonzero will be rotated and 90◦ in the
(x, y)-plane and so its rotation will not be a scalar multiple of itself. Thus, the
only eigenvectors are the vectors on the z-axis, with eigenvalue 1. Since we can
only find one linearly independent vector, we will not have an eigenbasis.

11. Let A =

[
3 4
4 3

]
. It so happens that A

[
1
1

]
= 7

[
1
1

]
and A

[
1
−1

]
= −

[
1
−1

]
.

Let a(t + 1) = 3a(t) + 4b(t) and b(t + 1) = 4a(t) + 3b(t) and suppose a(0) = 6
and b(0) = 2. Find closed formulas for a(t) and b(t).

Let ~x(t) =

[
a(t)
b(t)

]
. This problem gives you the eigenvalues and eigenvectors, so

we just need to find the coordinates of our initial condition ~x0 = ~x(0) in terms

of the eigenbasis {~v1, ~v2} = {
[
1
1

]
,

[
1
−1

]
} and use the formula from Section 7.1.

We find (by inspection, or from Section 3.4 techniques) that ~x0 = 4~v1 + 2~v2, so
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~x(t) = 4(7t)

[
1
1

]
+ 2(−1)t

[
1
−1

]
. Thus,

a(t) = 4(7t) + 2(−1)t

b(t) = 4(7t)− 2(−1)t

12. LetA =

[
2 6
−1 3

]
. Find all real eigenvalues ofA and their algebraic multiplicities.

fA(λ) = λ2 − 5λ + 12. From the quadratic formula, we see that A has no real
eigenvalues.

13. Let A =


1 2 3 4 5
0 2 1 3 9
0 0 −1 3 6
0 0 0 2 11
0 0 0 0 3

. Find all real eigenvalues of A and their algebraic

multiplicities.
A is triangular, so the eigenvalues are the diagonal entries: 1, 2 with algebraic
multiplicity 2, -1, and 3.

14. Let A be a 2 × 2 matrix with eigenvalues 1 and 5. Find the characteristic
polynomial of A.
The characteristic polynomial is the polynomial whose roots are the eigenvalues
of A (repeated according to algebraic multiplicity). Since A is 2× 2, 1 and 5 are
the only eigenvalues of A and each must have algebraic multiplicity 1, so that
fA(λ) = (λ− 1)(λ− 5).

15. Let A be a 3 × 3 matrix with eigenvalue 0 with algebraic multiplicity 3. Find
the characteristic polynomial of A.
As above. fA(λ) = (0− λ)3 = −λ3.

16. Let A be a 2×2 matrix with tr(A) = 5 and det(A) = 11. Find the characteristic
polynomial of A.
Since A is 2×2, this is enough information to find all of the coefficients of fA(λ).
See Theorem 7.2.5 on page 311. fA(λ) = λ2 − 5λ+ 11.

17. Let A =

[
1 k
k 2

]
. Find all scalars k so that 1 is an eigenvalue of A.

The characteristic polynomial is fA(λ) = λ2 − 3λ+ 2− k2. 1 is an eigenvalue if
and only if fA(1) = 0, or in other words, if 1− 3 + 2− k2 = 0, so k = 0.
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18. Let A =

[
1 k
k 2

]
. Find all scalars k so that 2 is an eigenvalue of A.

Proceed as above. Again, it so happens that 2 is an eigenvalue of A if and only
if k = 0.

19. Let A =

[
2 6
0 3

]
. It so happens that the eigenvalues of A are 2 and 3. Find

bases for the eigenspaces E2 and E3. Find all real eigenvectors of A and find an
eigenbasis for A if possible. (If not, explain why not.)
Note: The problem was incorrect as stated, since 2 and 3 were not eigenvalues
of the given matrix. I have adjusted the matrix slightly to make it doable.

E2 = ker

([
0 6
0 1

])
= span{

[
1
0

]
} and E3 = ker

([
−1 6
0 0

])
= span{

[
6
1

]
}, so a

basis of E2 is {
[
1
0

]
} and a basis of E3 is {

[
6
1

]
}. The eigenvectors of A are c

[
1
0

]
and d

[
6
1

]
where c and d are nonzero scalars. An eigenbasis of A is {

[
1
0

]
,

[
6
1

]
}.

20. Let A =

1 1 1
0 1 0
0 0 0

. It so happens that the eigenvalues of A are 1 (with algebraic

multiplicity 2) and 0. Find the eigenspaces of A, all real eigenvectors of A, and
find an eigenbasis for A if possible. (If not, explain why not.)

E1 = ker

0 1 1
0 0 0
0 0 −1

 = span{

1
0
0

} and E0 = ker(A) = span{

 1
0
−1

}. The

eigenvectors of A are c

1
0
0

 where not both of c 6= 0 and d

 1
0
−1

 where d 6= 0.

Since the geometric multiplicity of the eigenvalue 1 is 1, which is less that the
algebraic multiplicity (i.e., 2), there is no eigenbasis for A.

21. Let A =

1 1 0
0 1 0
0 0 1

. It so happens that the only eigenvalue of A is 1 (with

algebraic multiplicity 3). Find the eigenspaces of A, all real eigenvectors of A,
and find an eigenbasis for A if possible. (If not, explain why not.)
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E1 = ker

0 1 0
0 0 0
0 0 0

 = span{

1
0
0

 ,
0

0
1

}. The real eigenvectors of A are

c1

1
0
0

 + c2

0
0
1

 where not both of c1 and c2 are zero (geometrically, this is the

xz-plane minus the origin). There is not an eigenbasis for A, since the geo-
metric multiplicity of the eigenvalue 1 (i.e., 2) is strictly less than the algebraic
multiplicity of the eigenvalue 1 (i.e., 3).

22. Diagonalize the matrix A =

1 0 4
0 2 1
0 0 3

 if possible (that is, find an invertible

matrix S and a diagonal matrix D such that D = S−1AS.) If it’s not possible,
explain why not.

First, find an eigenbasis. For example, {

1
0
0

 ,
0

1
0

 ,
2

1
1

} (corresponding re-

spectively to the eigenvalues 1, 2, and 3). Then, let S =

1 0 2
0 1 1
0 0 1

, so that

D =

1 0 0
0 2 0
0 0 3

.

23. Diagonalize the matrix A =

1 0 1
0 1 1
0 0 1

 if possible (that is, find an invertible

matrix S and a diagonal matrix D such that D = S−1AS.) If it’s not possible,
explain why not.
This is not possible. The geometric multiplicity of 1 is 2, while its algebraic
multiplicity is 3, so there is no eigenbasis.

24. For which constants k is the matrix A =

1 0 1
0 1 0
0 0 k

 diagonalizable?

The eigenvalues are 1, 1, and k.

If k 6= 1, then 1 has algebraic multiplicity 2 and k has algebraic multiplicity 1.
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We find that an eigenbasis is {

1
0
0

 ,
0

1
0

 ,
 1

0
−1

}, and so A is diagonalizable.

If k = 1, then 1 has algebraic multiplicity 3, but we calculate that is has geo-
metric multiplicity of only 2 and so there is no eigenbasis for A, and A is not
diagonalizable.

25. Let A =

[
1 4
0 2

]
. Find formula for the entries of At where t is a positive integer.

Also, find the vector At
[
4
1

]
.

DiagonalizeA and use the formulaAt = SDtS−1 to compute thatAt =

[
1 4(2k)− 4
0 2k

]
.

Then, At
[
4
1

]
=

[
4(2k)

2k

]
.

26. Let A and B be 2×2 matrices with det(A) = det(B) = −1 and tr(A) = tr(B) =
0. Is A necessarily similar to B? (Explain why it is or give a counter-example
to show that it isn’t.)
Yes. The characteristic polynomials are fA(λ) = fB(λ) = λ2 − 1, so the eigen-
values of A are 1 and -1. As we have 2 distinct eigenvalues, A and B are both

diagonalizable and similar to

[
1 0
0 −1

]
and so similar to each other by symmetry

and transitivity.

27. Let A and B be 2× 2 matrices with det(A) = det(B) = 1 and tr(A) = tr(B) =
−2. Is A necessarily similar to B? (Explain why it is or give a counter-example
to show that it isn’t.)
No. In this case, the characteristic polynomials are both λ2 + 2λ+ 1, so that the
only eigenvalue of each of A and B is −1 (with algebraic multiplicity 2). We can
show that they need not be similar by finding examples in which the geometric
multiplicity of the eigenvalue differs. It’s easiest to start with triangular matrices,
as then we can easily ensure that the eigenvalues are what they should be (as
well as the conditions on the determinant and the trace). Doing this, we find

that A =

[
−1 0
0 −1

]
, B =

[
−1 1
0 −1

]
is a counterexample (and in fact, A =[

−1 0
0 −1

]
, B =

[
−1 b
0 −1

]
is a counterexample for any b 6= 0).
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