
Note: Typos were corrected in the statements of True/False #2 and Computational
#1, #6.

1 True/False

Examples
True or false: Answers in blue. Justification is given unless the result is a direct
statement of a theorem from the book/homework.

1. Let V = {f in C∞ | f ′(x) 6= 0 for all x}. Then V is a subspace of C∞.
False; e.g., V does not contain the zero vector f(x) = 0.

2. Let T (f) = f(0) be a linear transformation from P3 to R. Then T is an isomor-
phism.
False; dim(P3) = 4, dim(R) = 1, so the spaces are not isomorphic.

3. Pn is isomorphic to Rn.
False; dim(Pn) = n + 1, dim(Rn) = n.

4. P11 is isomorphic to R6×2.
True; one isomorphism is to arrange the values f(1), . . . , f(12) as the twelve
entries of the matrix. Another is to arrange the coefficients of the terms of f as
the entries of the matrix.

5. There is a basis of R2×2 consisting of four diagonal matrices.
False; any linear combination of diagonal matrices will be a diagonal matrix, so
it’s impossible to span R2×2 with diagonal matrices.

6. Let A and B be n× n matrices. If A is similar to B, then A = B.
False; there exists an invertible matrix S such that A = S−1BS, but it’s not
necessarily true that A = B. We’ve seen examples of matrices which are similar
but not equal in class.

7. Let A and B be n× n matrices. If A is similar to B, then B is similar to A.
True.

8. Let V be a finite dimensional subspace of F(R, R) such that T (f) = f ′ from V
to V is a linear transformation. Then T is not an isomorphism.
False; it depends on the space V . See for example Section 4.3, #48.

9. Let T be a linear transformation from a vector space V to a vector space W . If
ker(T ) is finite dimensional, then W is finite dimensional.
False; e.g., T (f) = f from F(R, R) to F(R, R).
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10. Let T be a linear transformation from a vector space V to a vector space W .
If ker(T ) is finite dimensional and im(T ) is finite dimensional, then V is finite
dimensional.
True. dim(V ) = rank(T ) + nullity(T ).

11. Let T be a linear transformation from a vector space V to a vector space W .
If ker(T ) is finite dimensional and im(T ) is finite dimensional, then W is finite
dimensional.
False; e.g., T (f) = f from P1 to F(R, R).

12. Let T be a linear transformation from a vector space V to a vector space W . If
W is finite dimensional, then dim(W ) = rank(T ) + ker(T ).
False; this statement doesn’t even make sense: you can’t add a number (rank(T ))
to a vector space (ker(T )). Modifying this, the similar statement dim(V ) =
rank(T ) + nullity(T ) is true.

13. Let U = { ~u1, . . . , ~un} and B = {~b1, . . . , ~bn} be two bases of a vector space V .
Then the change of basis matrix S from U to B is given by

S =
[
[~b1]U . . . [~bn]U

]
.

False; this is the change of basis matrix from B to U .

14. Let B and U be two bases of a vector space V . If S is the change of basis matrix
from B to U , then S−1 is the change of basis matrix from U to B.
True.

15. The matrix of a linear transformation from V to V is uniquely determined.
False; it changes depending on what basis you pick. However, the resulting
matrices will be similar.

16. Let A be an n × n matrix. If AT = A−1, then the columns of A form an
orthonormal basis of Rn.
True.

17. If A is an orthogonal n× n matrix, then the least-squares solution to A~x = ~b is

unique and ~x? = AT~b.
True; A is invertible, so the system is consistent. Thus, the least-squares so-
lutions are the exact solutions, of which there is only the stated solution since
A−1 = AT.

18. Let A be an n × m matrix. If the least-squares solution to A~x = ~b is unique,
then ker(A) = {0}.

2



True. The least-squares solutions are the vectors ~x? which satisfy A~x? = ~y? and
we’ve seen previously that you can get all solutions to this equation by picking
one solution and adding a vector in the kernel. If there are no other solutions,
it must be that ker(A) = {0}.

19. If B = {~v1, . . . , ~vn} is a basis for Rn, then for ~x in Rn, ~x = (~v1·~x)~v1+· · ·+( ~vn·~x) ~vn.
False. This is only true for an orthonormal basis.

20. If A is a symmetric n× n matrix, then A2 = In.

False; e.g., A =

[
1 1
1 1

]
. However, it is true if A is both symmetric and orthogonal

(since then A = AT = A−1).

21. Let f and g be nonorthogonal vectors in the vector space V . Then

‖f + g‖2 = ‖f‖2 + ‖g‖2.

False; see Theorem 5.1.9 (the Pythagorean Theorem).

22. Let ~x and ~y be vectors in Rn. Then |~x · ~y| = ‖~x‖‖~y‖ if and only if ~x and ~y are
parallel.
True; see Theorem 5.1.11 (the Cauchy-Schwarz inequality).

23. Let T be a linear transformation from a vector space V to Rn. Then

〈f, g〉 = T (f) · T (g)

is an inner product on V .
False; see #17 in Section 5.5.

24. Let 〈f, g〉 be an inner product on a vector space V . If 〈f, g〉 = 0, then either
f = 0 or g = 0.
False; this is true for any orthogonal vectors.

2 Proofs

1. (subspace) Let T be a transformation from V to W . Prove that ker(T ) is a
subspace of V .

(a) T (0) = T (0 + 0) = T (0) + T (0), so T (0) = 0. Thus, 0 is in ker(T ).
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(b) Let f, g be in ker(T ). Then T (f + g) = T (f) + T (g) = 0 + 0, so f + g is in
ker(T ).

(c) Let f be in ker(T ) and k a scalar. Then T (kf) = kT (f) = k0 = 0, so kf is
in ker(T ).

Thus, ker(T ) is a subspace of V .

2. (linear) Let S and T be linear transformations and k a scalar. Show that S + T
and kT are linear transformations.
Let R(f) = S(f) + T (f). Then R(f + g) = S(f + g) + T (f + g) = S(f) +
S(g) + T (f) + T (g) = S(f) + T (f) + S(g) + T (g) = R(f) + R(g) and R(kf) =
S(kf) + T (kf) = kS(f) + k(T (f) = kR(f), so R is a linear transformation.

Let Q(f) = kT (f). Then Q(f +g) = kT (f +g) = k(T (f)+T (g)) = Q(f)+Q(g)
and Q(cf) = kT (cf) = kcT (f) = cQ(f), so Q is a linear transformation.

3. (isomorphism) Let T (f) =


f(0)
f(1)

...
f(n)

 from Pn to Rn+1. Show that T is an isomor-

phism.
We can use any of the parts of Thereom 4.2.4. For example, let’s show that
ker(T ) = {0} (which is enough, since all of the vector spaces involved are finite
dimensional). ker(T ) is the set of vectors f such that f(0) = f(1) = · · · =
f(n) = 0. Since a nonzero polynomial of degree at most n has at most n roots
and f has n + 1 roots, it must be that f(x) = 0, so that ker(T ) = {0}.
Alternatively, you can also show that T is an isomorphism by showing that
im(T ) = Rn+1 by finding polynomials which map to the basis vectors ~e1, . . . , ~en+1.

5. (orthogonal vectors) Let T be an orthogonal transformation from Rn to Rn. Let
~v and ~w in Rn be orthogonal. Then T (~v) and T (~w) are orthogonal.
See Theorem 5.3.2 (p. 211).

6. (orthogonal transformation/matrix) Let A and B be orthogonal n× n matrices.
Show that AB, A−1, AT, and ATB are orthogonal.
See Theorem 5.3.4 (p. 213) for the first two. Use the fact that AT = A−1 for
all orthogonal matrices for the third. Combine the first and the third for the
fourth.

4



8. (inner product) Let 〈f, g〉 and (f, g) be two inner products on V . Let k > 0 be
a scalar. Show that 〈f, g〉+ (f, g) and k〈f, g〉 are inner products on V .
Let [f, g] = 〈f, g〉+ (f, g). Then:

(a) [f, g] = 〈f, g〉+ (f, g) = 〈g, f〉+ (g, f) = [g, f ].

(b) [f + h, g] = 〈f + h, g〉 + (f + h, g) = 〈f, g〉 + 〈h, g〉 + (f, g) + (h, g) ==
〈f, g〉+ (f, g) + 〈h, g〉+ (h, g) = [f, g] + [h, g].

(c) [kf, g] = 〈kf, g〉+ (kf, g) = k〈f, g〉+ k(f, g) = k[f, g].

(d) Let f 6= 0. Then [f, f ] = 〈f, f〉 + (f, f) > 0 since both 〈f, f〉 > 0 and
(f, f) > 0.

Thus, [, ] is an inner product on V .

Now, let ((f, g)) = k〈f, g〉. Then:

(a) ((f, g)) = k〈f, g〉 = k〈g, f〉 = ((g, f)).

(b) ((f + h, g)) = k〈f + h, g〉 = k(〈f, g〉+ 〈h, g〉) = k〈f, g〉+ k〈h, g〉 = ((f, g)) +
((h, g)).

(c) ((cf, g)) = k〈cf, g〉 = kc〈f, g〉 = ck〈f, g〉 = c((f, g)).

(d) Let f 6= 0. Then ((f, f)) = k〈f, f〉 > 0 since both 〈f, f〉 > 0 and k > 0.

Thus, ((, )) is an inner product on V .

3 Computational

1. Let B = {

1
3
2

 ,

 2
0
−1

 ,

 4
1
−3

}. Let ~x =

4
7
2

. Find [~x]B.

Either by inspection or by solving

1 2 4
3 0 1
2 −1 −2

c0

c1

c2

 =

4
7
2

, we see that

[~x]B =

 2
−1
1

.

2. Let T (~x) =

[
1 1
1 1

]
~x. Let B = {

[
1
1

]
,

[
4
−3

]
}. Find the B-matrix of T .

B =

[
2 1
0 0

]
.
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3. Is matrix

[
2 −7
7 2

]
similar to

[
2 7
−7 2

]
? (Justify your answer.)

Yes. Let S =

[
−1 1
1 1

]
(for example), and then A = S−1BS.

4. Let W be the vector space of all symmetric 4× 4 matrices. Find a basis for W .
Let Eij be the matrix with a 1 in position ij and 0’s elsewhere. Then a basis
is the matrices E11, E22, E33, E44 together with the six matrices Eij + Eji where
i < j.

5. Let W be the subspace of P3 of all functions f such that f(0) = f(1). Find a
basis for W .
Write f(x) = a+ bx+ cx2 +dx3. Then we have a = a+ b+ c+d, so b+ c+d = 0,
or d = −b− c. Thus, an arbitrary element is f(x) = a + bx + cx2 + (−b− c)x3 =
a(1) + b(x−x3) + c(x2−x3). After verifying that these are linearly independent,
we see that {1, x− x3, x2 − x3} is a basis for W .

6. Let T (A) =

[
1 2
0 0

]
A from R2×2 to R2×2. Find im(T ) and ker(T ).

(I originally left an A out of the definition of T . As written before, T wasn’t
a linear transformation. The answer below is for the corrected version stated
here.)

Write A =

[
a b
c d

]
. Then T (A) =

[
a + 2c b + 2d

0 0

]
= (a + 2c)E11 + (b + 2d)E12,

so im(T ) = span{E11, E12}.

If T (A) =

[
0 0
0 0

]
, then a = −2c and b = −2d, so A =

[
−2c −2d
c d

]
=

c

[
−2 0
1 0

]
+ d

[
0 −2
0 1

]
, so ker(T ) = span{

[
−2 0
1 0

]
,

[
0 −2
0 1

]
}.

7. Let T (f) = f + 3f ′′ from P2 to P2. Find im(T ) and ker(T ).
Write f(t) = a+bt+ct2. Then T (f(t)) = a+bt+ct2+3(2c) = a(1)+b(t)+c(6+t2),
so im(T ) = span{1, t, 6 + t2} (and it’s also equal to P2).

If T (f) = 0, then a + 6c = 0, b = 0, and c = 0. Solving, we see a = b = c = 0,
so ker(T ) = {0}. (Incidentally, this shows that T is an isomorphism.)

8. Let T (A) = A+AT from R2×2 to R2×2. Let U = {
[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
}

be a basis of R2×2. Find the U -matrix of T .
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
2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

.

9. Let U = {1, x, x2} and B = {1, 1 + x, (1 + x)2} be bases for P2. Find the change
of basis matrices from B to U and from U to B.

From B to U :

1 1 1
0 1 2
0 0 1

 From U to B:

1 −1 1
0 1 −2
0 0 1



10. Use the Gram-Schmidt process to find an orthonormal basis of V = span{


1
0
1
2

 ,


2
1
0
2

 ,


1
−1
0
1

}

and in the process find the QR factorization of the matrix


1 2 1
0 1 −1
1 0 0
2 2 1

.

Write ~v1 =


1
0
1
2

 , ~v2 =


2
1
0
2

 , ~v3 =


1
−1
0
1

.

Then ~u1 = 1√
6
~v1 = 1√

6


1
0
1
2

 and r11 =
√

6.

Thus, ~v2
⊥ = ~v2 − ( ~u1 · ~v2) ~u1 = 1

3


1
1
−1
0

 and r12 =
√

6. (Before going on, you

should verify that ~u1 and ~v2
⊥ really are orthogonal: if they aren’t, you made a

computational error and if you don’t fix it now, everything that follows will be
wrong too.)
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Thus, ~u2 = 1√
3
~v2
⊥ = 1√

3


1
1
−1
0

 and r22 =
√

3.

Now, ~v3
⊥ = ~v3−( ~u1 · ~v3) ~u1−( ~u2 · ~v3) ~u2 = 1

2


1
−2
−1
0

, and r13 = 3√
6
, r23 = 0. (Before

going on, verify that ~v3
⊥ is orthogonal to both ~u1 and ~u2.)

Finally, ~u3 = 1√
3/2

~v3
⊥ = 1√

6


1
−2
−1
0

 and r33 =
√

3/2.

Thus, our orthonormal basis for V is { 1√
6


1
0
1
2

 ,
1√
3


1
1
−1
0

 ,
1√
6


1
−2
−1
0

}, and the

QR factorization is

Q =


1/
√

6 1/
√

3 1/
√

6

0 1/
√

3 −2/
√

6

1/
√

6 −1/
√

3 −1/
√

6

2/
√

6 0 0

, R =

√6
√

6 3/
√

6

0
√

3 0

0 0
√

3/2

.

(Theoretically, you can check your work one final time by multiplying QR and
seeing if you end up with the matrix you started with, but since the numbers
usually get messy and since most errors will be caught by checking orthogonality,
this usually isn’t worth it.)

11. Find the matrix of the orthogonal projection from R3 onto the subspace W =

span{

1
1
1

 ,

2
0
1

}.
We’d like to use Theorem 5.3.10, but first we need an orthonormal ba-
sis. Use Gram-Schmidt (it’s really easy on these particular vectors) to find the

orthonormal basis
1√
3

1
1
1

,
1√
2

 1
−1
0

.
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Thus, Q =

1/
√

3 1/
√

2

1/
√

3 −1/
√

2

1/
√

3 0

 and QQT =
1

6

 5 −1 2
−1 5 2
2 2 2

.

12. Find the least-squares solution to the inconsistent system

x + 4y = −2
x + 2y = 6
2x + 3y = 1.

x = 3, y = −1.

13. Fit a linear function of the form f(t) = c0 + c1t to the data points (1, 1), (4, 2),
(8, 4), (11, 5) using least-squares.
f(t) = 15

29
+ 12

29
t.

14. Let 〈A, B〉 = trace(ATB) be an inner product on R2×2. Pick a few matrices and
compute 〈A, B〉, ‖A‖, and dist(A, B).

For example, let A = I2 and B =

[
0 1
1 1

]
. Then 〈A, B〉 = 1, ‖A‖ = 1, ‖B‖ =

√
2,

and dist(A, B) =
√

3.
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