1 True/False

True or false: Answers in blue. Justification is given unless the result is a direct statement of a theorem from the book/homework.

1. If a system of equations has fewer equations than unknowns, then it has infinitely many solutions.
False; it could have no solution.
2. If A in an $n \times m$ matrix, then $\operatorname{rank}(A) \leq n$.

True.
3. If A in an $n \times n$ matrix and $A \vec{x}=\overrightarrow{0}$, then $\vec{x}=\overrightarrow{0}$.

False; this is only true if $\operatorname{rank}(A)=n$. e.g., $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
4. If a square matrix has two equal columns, then it is not invertible.

True.
5. If a square matrix has two equal rows, then it is not invertible.

True. $\operatorname{rref}(A)$ will have a row of zeroes, so $\operatorname{rref}(A) \neq I_{n}$.
6. There exists a 2×2 matrix A such that $\operatorname{rank}(A)=0$.

True; the zero matrix.
7. There exists a 2×2 matrix A such that $\operatorname{rank}(A)=4$.

False; $\operatorname{rank}(A) \leq 2$.
8. If A and B are $n \times n$ matrices, then $(A B)^{2}=A^{2} B^{2}$.

False; only true if $A B=B A$. Otherwise, $(A B)^{2}=A B A B$.
9. For all $n \times n$ matrices A, B, and $C,(A B) C=A(B C)$.

True.
10. A matrix of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ with $a^{2}+b^{2}=1$ must be invertible.

True. $\operatorname{det}(A)=1$. Also, clearly invertible from the geometric interpretation as a rotation.
11. There exists a 2×2 matrix A such that $A^{3}=I_{2}$ but $A \neq I_{2}$.

True. A rotation by $2 \pi / 3$ radians will work.
12. There exists a 2×2 matrix A such that $A^{4}=I_{2}$ but $A^{2} \neq I_{2}$.

True. A rotation by $2 \pi / 4$ radians will work.
13. There exists a 2×2 matrix A such that $A^{2}=I_{2}$ but $A^{4} \neq I_{2}$.

False; if $A^{2}=I_{2}$, then $A^{4}=\left(A^{2}\right)^{2}=\left(I_{2}\right)^{2}=I_{2}$.
14. If A is a 3×4 matrix, then $A \vec{x}=\overrightarrow{0}$ has infinitely many solutions. True; fewer equations than variables, so not a unique solution, and homogeneous, so at least one solution.
15. The solutions to $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \vec{x}=\overrightarrow{e_{1}}$ form a line in \mathbb{R}^{2}.

False; this system is inconsistent. However, the solutions to $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \vec{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ form a line in \mathbb{R}^{2}.
16. Let A and B be $n \times n$ matrices. If \vec{v} is in $\operatorname{ker}(B)$, then \vec{v} is in $\operatorname{ker}(A B)$. True; $A B \vec{v}=A \overrightarrow{0}=\overrightarrow{0}$.
17. Let A and B be $n \times n$ matrices. If \vec{v} is in $\operatorname{ker}(B)$, then \vec{v} is in $\operatorname{ker}(B A)$.

False; this almost never happens, so counterexamples are easy to find. e.g., let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, and $\vec{v}=\overrightarrow{e_{2}}$.
18. If $\vec{x}=\vec{v}$ and $\vec{x}=\vec{w}$ are two solutions to $A \vec{x}=\vec{b}$, then $\vec{x}=\vec{v}+\vec{w}$ is a solution too.
False; this is only true if $\vec{b}=\overrightarrow{0}$. Otherwise, $A(\vec{v}+\vec{w})=A \vec{v}+A \vec{w}=2 \vec{b}$.
19. If \vec{v} and \vec{w} are in $\operatorname{im}(A)$, then $2 \vec{v}-7 \vec{w}$ is in $\operatorname{im}(A)$ too.

True; $\operatorname{im}(A)$ is a subspace of \mathbb{R}^{n}, so it's closed under linear combinations.
20. If $A \vec{v}=A \vec{w}$, then $\vec{v}-\vec{w}$ is in $\operatorname{ker}(A)$.

True; $A(\vec{v}-\vec{w})=A \vec{v}-A \vec{w}=\overrightarrow{0}$.
21. Let A be an $n \times m$ matrix. Then $\operatorname{im}(A)$ is a subspace of \mathbb{R}^{n}. True.
22. Let A be an $n \times m$ matrix. Then $\operatorname{im}(A)$ is a subspace of \mathbb{R}^{m}. False. $\operatorname{im}(A)$ is a subspace of \mathbb{R}^{n}.
23. If $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ for an $n \times m$ matrix A, then $n \leq m$.

False. Rather, $m \leq n$.
24. If A is an upper-triangular matrix, then A is invertible.

False. This is only true if the entries on the diagonal are all nonzero, as then $\operatorname{rref}(A)=I_{n}$.
25. If A is a permutation matrix, then $A \overrightarrow{e_{1}}=\overrightarrow{e_{i}}$ for some i.

True. Clear from the definition of a permutation matrix.
26. Let A be a $n \times m$ matrix. Then $\operatorname{dim}(\operatorname{im}(A))+\operatorname{dim}(\operatorname{ker}(A))=n$. False. By Rank-Nullity, it's equal to m.

2 Proofs

1. (vector equality) Let A be an $n \times m$ matrix and \vec{v} and \vec{w} vectors in \mathbb{R}^{m}. Prove that $A(\vec{v}+\vec{w})=A \vec{v}+A \vec{w}$. See Thm. 1.3.10 on p. 31.
2. (matrix equality) Let A be an $n \times p$ matrix and C and D be $p \times m$ matrices. Prove that $A(C+D)=A C+A D$.
Let $\overrightarrow{c_{1}}, \ldots, \overrightarrow{c_{m}}$ be the columns of C and $\overrightarrow{d_{1}}, \ldots, \overrightarrow{d_{m}}$ be the columns of D. Then $(i$ th column of $A(C+D))=A(i$ th column of $C+D)=A\left(\vec{c}_{i}+\vec{d}_{i}\right)=A \vec{c}_{i}+A \vec{d}_{i}=$ $(i$ th column of $A C)+(i$ th column of $A D)=(i$ th column of $A C+A D)$.
3. (matrix equality) Let T be a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}. Prove that the matrix of T is

$$
A=\left[\begin{array}{lll}
T\left(\overrightarrow{e_{1}}\right) & \ldots & T\left(\overrightarrow{e_{m}}\right)
\end{array}\right] .
$$

See Thm. 2.1.2 on p. 47.
4. (linear transformation) Let $T(\vec{x})$ be a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}. Let c be a scalar in \mathbb{R}. Define $S(\vec{x})=c T(\vec{x})$. Prove that $S(\vec{x})$ is a linear transformation.
We need to show two things: $S(\vec{v}+\vec{w})=S(\vec{v})+S(\vec{w})$ and $S(k \vec{v})=k S(\vec{v})$.
Let \vec{v}, \vec{w} in \mathbb{R}^{m} and k be a scalar. Then:

$$
S(\vec{v}+\vec{w})=c T(\vec{v}+\vec{w})=c(T(\vec{v})+T(\vec{w}))=c T(\vec{v})+c T(\vec{w})=S(\vec{v})+S(\vec{w})
$$

and

$$
S(k \vec{v})=c T(k \vec{v})=c k T(\vec{v})=k c T(\vec{v})=k S(\vec{v}) .
$$

5. (invertible) Let A and B be $n \times n$ matrices such that $B A=I_{n}$. Prove that A is invertible. (This is probably trickier than what you'll see on the exam.)
See Thm. 2.4.8. We need to show that $A \vec{x}=\overrightarrow{0}$ has only the solution $\vec{x}=\overrightarrow{0}$. Multiply both sides by $B: B A=I_{n}$ and $B \overrightarrow{0}=\overrightarrow{0}$, so $\vec{x}=\overrightarrow{0}$.
6. (invertible) Let A and B be invertible $n \times n$ matrices. Prove that $A B$ is invertible. See Thm. 2.4.7. Or, verify that $\left(B^{-1} A^{-1}\right) A B=I_{n}$, so that $(A B)^{-1}=B^{-1} A^{-1}$.
7. (subspace) Let T be a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}. Then $\operatorname{ker}(T)$ is a subspace of \mathbb{R}^{n}.
See Thm. 3.1.6. on p. 108.
8. (subspace) Let V and W be subspaces of \mathbb{R}^{n}. Define $V+W$ to be the set $\{\vec{v}+\vec{w} \mid \vec{v}$ is in V and \vec{w} is in $W\}$. Determine whether $V+W$ is a subspace of \mathbb{R}^{n}.
It is. We need to check that it contains $\overrightarrow{0}$, is closed under addition, and is closed under scalar multiplication.
(i) As $\overrightarrow{0}$ is in both V and $W, \overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}$ is in $V+W$.
(ii) Let $\overrightarrow{v_{1}}+\overrightarrow{w_{1}}$ and $\overrightarrow{v_{2}}+\overrightarrow{w_{2}}$ be two arbitrary elements of $V+W$. Then $\overrightarrow{v_{1}}+$ $\left.\overrightarrow{w_{1}}\right)+\left(\overrightarrow{v_{2}}+\overrightarrow{w_{2}}\right)=\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right)+\left(\overrightarrow{w_{1}}+\overrightarrow{w_{2}}\right) .\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right)$ is in V and $\left(\overrightarrow{w_{1}}+\overrightarrow{w_{2}}\right)$ is in W since V and W are closed under addition, so $\left(\overrightarrow{v_{1}}+\overrightarrow{w_{1}}\right)+\left(\overrightarrow{v_{2}}+\overrightarrow{w_{2}}\right)$ is in $V+W$.
(iii) Let $\vec{v}+\vec{w}$ be an arbitrary element of $V+W$ and k be a scalar. Then $k(\vec{v}+\vec{w})=k \vec{v}+k \vec{w} . k \vec{v}$ is in V and $k \vec{w}$ is in W since V and W are closed under scalar multiplication, so $k(\vec{v}+\vec{w})$ is in $V+W$.

3 Computational

1. Use Gauss-Jordan elimination to find all solutions of the system

$$
\begin{aligned}
3 x+2 y-2 z-w & =3 \\
x+y+z+2 w & =5 \\
3 y-3 z-3 w & =0
\end{aligned}
$$

Taking rref, we see: $x=1-1 / 3 t, y=2-1 / 3 t, z=2-4 / 3 t, w=t$.
2. Let

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 3 & 7 \\
-2 & 1 & 0 \\
1 & 1 & 3
\end{array}\right], B=\left[\begin{array}{ccc}
2 & -6 & 24 \\
1 & -2 & 6 \\
-1 & 2 & -4
\end{array}\right], \\
C=\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 6 & -3 \\
2 & 4 & -2
\end{array}\right], D=\left[\begin{array}{cccc}
1 & 3 & 7 & 5 \\
-2 & 1 & 0 & -3 \\
1 & 1 & 3 & 3
\end{array}\right] .
\end{gathered}
$$

(a) Find $\operatorname{rref}(A)$.
$\operatorname{rref}(A)=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right], \operatorname{rref}(B)=I_{3}$,
$\operatorname{rref}(C)=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \operatorname{rref}(D)=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
(b) Find $\operatorname{rank}(A)$.

Counting leading ones, $\operatorname{rank}(A)=2, \operatorname{rank}(B)=3, \operatorname{rank}(C)=1$, and $\operatorname{rank}(D)=2$.
(c) Is A invertible? If so, find A^{-1}. If not, explain how you know that it isn't. A and C aren't invertible since they don't have rank 3. D isn't invertible since it isn't square.
$\operatorname{rref}\left(\left[\begin{array}{ll}B & \mid\end{array} I_{n}\right]\right)=\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -1 & 18 / 5 & 3 / 5 \\ 0 & 1 & 0 & -1 / 2 & 8 / 5 & 3 / 5 \\ 0 & 0 & 1 & 0 & 1 / 10 & 1 / 10\end{array}\right]$, so $B^{-1}=\left[\begin{array}{ccc}-1 & 18 / 5 & 3 / 5 \\ -1 / 2 & 8 / 5 & 3 / 5 \\ 0 & 1 / 10 & 1 / 10\end{array}\right]$.
(d) Find a basis of $\operatorname{im}(A)$ and $\operatorname{ker}(A)$ and compute their dimensions.

Use $\operatorname{rref}(A)$. (Add a column of zeroes to get the augmented matrix.)
For the image, we just take the columns that have a leading one. Thus, a basis of $\operatorname{im}(A)$ is $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$. (That is, $\operatorname{im}(A)=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]\right\}$ and these vectors are linearly independent.) Thus, $\operatorname{dim}(\operatorname{im}(A))=2$. Similarly, $\operatorname{im}(B)$ has basis $\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}-6 \\ -2 \\ 2\end{array}\right],\left[\begin{array}{c}24 \\ 6 \\ -4\end{array}\right]$,
$\operatorname{im}(C)$ has basis $\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$, and
$\operatorname{im}(D)$ has basis $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$.
Thus, $\operatorname{dim}(\operatorname{im}(B))=3, \operatorname{dim}(\operatorname{im}(C))=1, \operatorname{dim}(\operatorname{im}(D))=2$.
(Compare these with the ranks.)
For the kernels, we find the solutions to $A \vec{x}=\overrightarrow{0}$ and use the free variables to write the general solution as the span of vectors. For A, we have general
solution

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right],
$$

so a basis for $\operatorname{ker}(A)$ is $\left[\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right]$. Thus, $\operatorname{dim}(\operatorname{ker}(A))=1$.
B is invertible, so $\operatorname{ker}(B)=\{\overrightarrow{0}\}$, so $\operatorname{ker}(B)$ has a basis with no vectors in it and thus $\operatorname{dim}(\operatorname{ker}(B))=0$.
For C, we have general solution

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 s+t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],
$$

so a basis for $\operatorname{ker}(C)$ is $\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\operatorname{dim}(\operatorname{ker}(C))=2$.
Similarly, a basis for $\operatorname{ker}(D)$ is $\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ -1 \\ 0 \\ 1\end{array}\right]$ and $\operatorname{dim}(\operatorname{ker}(D))=2$.
(Note that in each case $\operatorname{dim}(\operatorname{im}(A))+\operatorname{dim}(\operatorname{ker}(A))=\#$ of columns of A, as required by Rank-Nullity.)
(e) Let $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ (and $\overrightarrow{v_{4}}$ for D) be the columns of A. Are they linearly independent? If not, find a linear relation among them and use it to express one vector as a linear combination of the other two.
They are linearly independent if and only if $\operatorname{rank}(A)=\#$ of columns of A. Thus, the columns of B are linearly independent and the columns of the others aren't. We can use a vector from the kernel to find a linear relation, and then rearrange it algebraically to find the required linear combinations.

For $A,\left[\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right]$ is in $\operatorname{ker}(A)$, so $-\overrightarrow{v_{1}}-2 \overrightarrow{v_{2}}+\overrightarrow{v_{3}}=\overrightarrow{0}$ and so $\overrightarrow{v_{3}}=\overrightarrow{v_{1}}+2 \overrightarrow{v_{2}}$.
For $C,-2 \overrightarrow{v_{1}}+\overrightarrow{v_{2}}+0 \overrightarrow{v_{3}}=\overrightarrow{0}$, and so $\overrightarrow{v_{2}}=2 \overrightarrow{v_{1}}$.
For $D,-\overrightarrow{v_{1}}-2 \overrightarrow{v_{2}}+\overrightarrow{v_{3}}+0 \overrightarrow{v_{4}}=\overrightarrow{0}$ and so $\overrightarrow{v_{3}}=\overrightarrow{v_{1}}+2 \overrightarrow{v_{2}}$.
(f) Are $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ (and $\overrightarrow{v_{4}}$ for D) a basis for \mathbb{R}^{3} ?
$\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$, so any three linearly independent vectors form a basis. Thus,
the column vectors of B form a basis of \mathbb{R}^{3}, while the column vectors of A, C, and D do not.
(g) Compute $A B, B A, A C$, etc. Compute $A\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Compute $A\left(2 \overrightarrow{e_{1}}+3 \overrightarrow{e_{3}}\right)$. Use http://kinetigram.com/mck/LinearAlgebra/JPaisMatrixMult04/classes/ JPaisMatrixMult04.html to check your work.
3. Let $A=\left[\begin{array}{cc}1 & 4 \\ 2 & -1\end{array}\right]$. Find all matrices which commute with A.

Write $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then the equality $A B=B A$ can be expressed as

$$
\left[\begin{array}{cc}
a+4 c & b+4 d \\
2 a-c & 2 b-d
\end{array}\right]=\left[\begin{array}{ll}
a+2 b & 4 a-b \\
c+2 d & 4 c-d
\end{array}\right]
$$

This gives us the four equations $a+4 c=a+2 b, b+4 d=4 a-b, 2 a-c=c+2 d$, and $2 b-d=4 c-d$. Either solve for a, b, c, and d by Gauss-Jordan, or proceed by inspection (e.g., the first and last equations show $b=2 c$) to find that all matrices of the form $\left[\begin{array}{cc}a & b \\ b / 2 & a-b / 2\end{array}\right]$ commute with A.
(Alternatively, if you solve for b and d instead of c and d, you'll get the slightly nicer looking-but equivalent-form $\left[\begin{array}{ll}a & 2 c \\ c & a-c\end{array}\right]$.)
4. Find the matrices of the linear transformations T from \mathbb{R}^{2} to \mathbb{R}^{2} which represent:
(a) a scaling by a factor of 3 .
$\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
(b) a 30° counterclockwise rotation.
$\left[\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right]$
(c) a 45° clockwise rotation. (Hint: use a negative angle)
$\left[\begin{array}{cc}\sqrt{2} / 2 & \sqrt{2} / 2 \\ -\sqrt{2} / 2 & \sqrt{2} / 2\end{array}\right]$
(d) a reflection about the line spanned by $\left[\begin{array}{c}-3 \\ 4\end{array}\right]$.

The unit vector $\vec{u}=\left[\begin{array}{c}-3 / 5 \\ 4 / 5\end{array}\right]$ spans this line (call it L). Then the transfor-
mation $\operatorname{proj}_{L}(\vec{x})$ has matrix

$$
\frac{1}{25}\left[\begin{array}{cc}
9 & -12 \\
-12 & 16
\end{array}\right]
$$

so $\operatorname{ref}_{L}(\vec{x})=2 \operatorname{proj}_{L}(\vec{x})-\vec{x}$ has matrix

$$
\frac{1}{25}\left[\begin{array}{cc}
-7 & -24 \\
-24 & 7
\end{array}\right]
$$

$(-7 / 25=2(9 / 25)-1,-24 / 25=2(-12 / 25)$, etc. $)$
(e) an orthogonal projection onto the line spanned by $\left[\begin{array}{c}5 \\ 12\end{array}\right]$.
(Hint: $5^{2}+12^{2}=13^{2}$)
The unit vector $\vec{u}=\left[\begin{array}{c}5 / 13 \\ 12 / 13\end{array}\right]$ spans this line (call it L). Then the transformation $\operatorname{proj}_{L}(\vec{x})$ has matrix

$$
\frac{1}{169}\left[\begin{array}{cc}
25 & 60 \\
60 & 144
\end{array}\right]
$$

(f) a vertical shear of strength 2 (that is, coming from a line with slope 2) $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
5. Interpret the linear transformations with the following matrices geometrically:
(a) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
90° counterclockwise rotation
(b) $\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$
horizontal shear of strength 3 (that is, coming from a line with slope $1 / 3$)
(c) $\left[\begin{array}{cc}\sqrt{3} & -1 \\ 1 & \sqrt{3}\end{array}\right]$
30° counterclockwise rotation and a scaling by a factor of 2

