
1 True/False

True or false: Answers in blue. Justification is given unless the result is a direct
statement of a theorem from the book/homework.

1. If a system of equations has fewer equations than unknowns, then it has infinitely
many solutions.
False; it could have no solution.

2. If A in an n×m matrix, then rank(A) ≤ n.
True.

3. If A in an n× n matrix and A~x = ~0, then ~x = ~0.

False; this is only true if rank(A) = n. e.g.,

[
1 1
1 1

] [
1
−1

]
=

[
0
0

]
4. If a square matrix has two equal columns, then it is not invertible.

True.

5. If a square matrix has two equal rows, then it is not invertible.
True. rref(A) will have a row of zeroes, so rref(A) 6= In.

6. There exists a 2× 2 matrix A such that rank(A) = 0.
True; the zero matrix.

7. There exists a 2× 2 matrix A such that rank(A) = 4.
False; rank(A) ≤ 2.

8. If A and B are n× n matrices, then (AB)2 = A2B2.
False; only true if AB = BA. Otherwise, (AB)2 = ABAB.

9. For all n× n matrices A, B, and C, (AB)C = A(BC).
True.

10. A matrix of the form

[
a −b
b a

]
with a2 + b2 = 1 must be invertible.

True. det(A) = 1. Also, clearly invertible from the geometric interpretation as
a rotation.

11. There exists a 2× 2 matrix A such that A3 = I2 but A 6= I2.
True. A rotation by 2π/3 radians will work.

12. There exists a 2× 2 matrix A such that A4 = I2 but A2 6= I2.
True. A rotation by 2π/4 radians will work.
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13. There exists a 2× 2 matrix A such that A2 = I2 but A4 6= I2.
False; if A2 = I2, then A4 = (A2)2 = (I2)

2 = I2.

14. If A is a 3× 4 matrix, then A~x = ~0 has infinitely many solutions.
True; fewer equations than variables, so not a unique solution, and homogeneous,
so at least one solution.

15. The solutions to

[
1 1
1 1

]
~x = ~e1 form a line in R2.

False; this system is inconsistent. However, the solutions to

[
1 1
1 1

]
~x =

[
1
1

]
form

a line in R2.

16. Let A and B be n× n matrices. If ~v is in ker(B), then ~v is in ker(AB).

True; AB~v = A~0 = ~0.

17. Let A and B be n× n matrices. If ~v is in ker(B), then ~v is in ker(BA).
False; this almost never happens, so counterexamples are easy to find. e.g., let

A =

[
1 1
1 1

]
, B =

[
1 0
0 0

]
, and ~v = ~e2.

18. If ~x = ~v and ~x = ~w are two solutions to A~x = ~b, then ~x = ~v + ~w is a solution
too.
False; this is only true if ~b = ~0. Otherwise, A(~v + ~w) = A~v + A~w = 2~b.

19. If ~v and ~w are in im(A), then 2~v − 7~w is in im(A) too.
True; im(A) is a subspace of Rn, so it’s closed under linear combinations.

20. If A~v = A~w, then ~v − ~w is in ker(A).

True; A(~v − ~w) = A~v − A~w = ~0.

21. Let A be an n×m matrix. Then im(A) is a subspace of Rn.
True.

22. Let A be an n×m matrix. Then im(A) is a subspace of Rm.
False. im(A) is a subspace of Rn.

23. If ker(A) = {~0} for an n×m matrix A, then n ≤ m.
False. Rather, m ≤ n.

24. If A is an upper-triangular matrix, then A is invertible.
False. This is only true if the entries on the diagonal are all nonzero, as then
rref(A) = In.
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25. If A is a permutation matrix, then A~e1 = ~ei for some i.
True. Clear from the definition of a permutation matrix.

26. Let A be a n×m matrix. Then dim(im(A)) + dim(ker(A)) = n.
False. By Rank-Nullity, it’s equal to m.

2 Proofs

1. (vector equality) Let A be an n×m matrix and ~v and ~w vectors in Rm. Prove
that A(~v + ~w) = A~v + A~w.
See Thm. 1.3.10 on p. 31.

2. (matrix equality) Let A be an n × p matrix and C and D be p × m matrices.
Prove that A(C +D) = AC + AD.

Let ~c1, . . . , ~cm be the columns of C and ~d1, . . . , ~dm be the columns of D. Then

(ith column of A(C+D)) = A(ith column of C+D) = A(~ci + ~di) = A~ci +A~di =
(ith column of AC)+(ith column of AD) = (ith column of AC + AD).

3. (matrix equality) Let T be a linear transformation from Rm to Rn. Prove that
the matrix of T is

A =
[
T (~e1) . . . T ( ~em)

]
.

See Thm. 2.1.2 on p. 47.

4. (linear transformation) Let T (~x) be a linear transformation from Rm to Rn. Let
c be a scalar in R. Define S(~x) = cT (~x). Prove that S(~x) is a linear transforma-
tion.
We need to show two things: S(~v + ~w) = S(~v) + S(~w) and S(k~v) = kS(~v).
Let ~v, ~w in Rm and k be a scalar. Then:

S(~v + ~w) = cT (~v + ~w) = c(T (~v) + T (~w)) = cT (~v) + cT (~w) = S(~v) + S(~w)

and
S(k~v) = cT (k~v) = ckT (~v) = kcT (~v) = kS(~v).

5. (invertible) Let A and B be n× n matrices such that BA = In. Prove that A is
invertible. (This is probably trickier than what you’ll see on the exam.)

See Thm. 2.4.8. We need to show that A~x = ~0 has only the solution ~x = ~0.
Multiply both sides by B: BA = In and B~0 = ~0, so ~x = ~0.
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6. (invertible) Let A and B be invertible n×n matrices. Prove that AB is invertible.
See Thm. 2.4.7. Or, verify that (B−1A−1)AB = In, so that (AB)−1 = B−1A−1.

7. (subspace) Let T be a linear transformation from Rm to Rn. Then ker(T ) is a
subspace of Rn.
See Thm. 3.1.6. on p. 108.

8. (subspace) Let V and W be subspaces of Rn. Define V + W to be the set
{~v + ~w

∣∣ ~v is in V and ~w is in W}. Determine whether V + W is a subspace of
Rn.
It is. We need to check that it contains ~0, is closed under addition, and is closed
under scalar multiplication.

(i) As ~0 is in both V and W , ~0 = ~0 +~0 is in V +W .

(ii) Let ~v1 + ~w1 and ~v2 + ~w2 be two arbitrary elements of V + W . Then (~v1 +
~w1) + (~v2 + ~w2) = (~v1 + ~v2) + ( ~w1 + ~w2). (~v1 + ~v2) is in V and ( ~w1 + ~w2) is
in W since V and W are closed under addition, so (~v1 + ~w1) + (~v2 + ~w2) is
in V +W .

(iii) Let ~v + ~w be an arbitrary element of V + W and k be a scalar. Then
k(~v + ~w) = k~v + k ~w. k~v is in V and k ~w is in W since V and W are closed
under scalar multiplication, so k(~v + ~w) is in V +W .

3 Computational

1. Use Gauss-Jordan elimination to find all solutions of the system

3x + 2y − 2z − w = 3
x + y + z + 2w = 5

3y − 3z − 3w = 0.

Taking rref, we see: x = 1− 1/3t, y = 2− 1/3t, z = 2− 4/3t, w = t.

2. Let

A =

 1 3 7
−2 1 0
1 1 3

 , B =

 2 −6 24
1 −2 6
−1 2 −4

 ,
C =

1 2 −1
3 6 −3
2 4 −2

 , D =

 1 3 7 5
−2 1 0 −3
1 1 3 3

 .
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(a) Find rref(A).

rref(A) =

1 0 1
0 1 2
0 0 0

, rref(B) = I3,

rref(C) =

1 2 −1
0 0 0
0 0 0

, rref(D) =

1 0 1 2
0 1 2 1
0 0 0 0

.

(b) Find rank(A).
Counting leading ones, rank(A) = 2, rank(B) = 3, rank(C) = 1, and
rank(D) = 2.

(c) Is A invertible? If so, find A−1. If not, explain how you know that it isn’t.
A and C aren’t invertible since they don’t have rank 3. D isn’t invertible
since it isn’t square.

rref(
[
B | In

]
) =

 1 0 0 -1 18/5 3/5
0 1 0 -1/2 8/5 3/5
0 0 1 0 1/10 1/10

, soB−1 =

 −1 18/5 3/5
−1/2 8/5 3/5

0 1/10 1/10

.

(d) Find a basis of im(A) and ker(A) and compute their dimensions.
Use rref(A). (Add a column of zeroes to get the augmented matrix.)
For the image, we just take the columns that have a leading one. Thus, a

basis of im(A) is

 1
−2
1

 ,
3

1
1

. (That is, im(A) = span{

 1
−2
1

 ,
3

1
1

} and

these vectors are linearly independent.) Thus, dim(im(A)) = 2. Similarly,

im(B) has basis

 2
1
−1

 ,
−6
−2
2

 ,
24

6
−4

,

im(C) has basis

1
3
2

, and

im(D) has basis

 1
−2
1

 ,
3

1
1

.

Thus, dim(im(B)) = 3, dim(im(C)) = 1, dim(im(D)) = 2.
(Compare these with the ranks.)

For the kernels, we find the solutions to A~x = ~0 and use the free variables
to write the general solution as the span of vectors. For A, we have general
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solution x1

x2

x3

 =

 −t−2t
t

 = t

−1
−2
1

 ,
so a basis for ker(A) is

−1
−2
1

. Thus, dim(ker(A)) = 1.

B is invertible, so ker(B) = {~0}, so ker(B) has a basis with no vectors in it
and thus dim(ker(B)) = 0.
For C, we have general solutionx1

x2

x3

 =

−2s+ t
s
t

 = s

−2
1
0

+ t

1
0
1

 ,
so a basis for ker(C) is

−2
1
0

 ,
1

0
1

 and dim(ker(C)) = 2.

Similarly, a basis for ker(D) is


−1
−2
1
0

 ,

−2
−1
0
1

 and dim(ker(D)) = 2.

(Note that in each case dim(im(A)) + dim(ker(A)) = # of columns of A, as
required by Rank-Nullity.)

(e) Let ~v1, ~v2, ~v3 (and ~v4 for D) be the columns of A. Are they linearly inde-
pendent? If not, find a linear relation among them and use it to express one
vector as a linear combination of the other two.
They are linearly independent if and only if rank(A) =# of columns of A.
Thus, the columns of B are linearly independent and the columns of the
others aren’t. We can use a vector from the kernel to find a linear relation,
and then rearrange it algebraically to find the required linear combinations.

For A,

−1
−2
1

 is in ker(A), so −~v1 − 2~v2 + ~v3 = ~0 and so ~v3 = ~v1 + 2~v2.

For C, −2~v1 + ~v2 + 0~v3 = ~0, and so ~v2 = 2~v1.
For D, −~v1 − 2~v2 + ~v3 + 0~v4 = ~0 and so ~v3 = ~v1 + 2~v2.

(f) Are ~v1, ~v2, ~v3 (and ~v4 for D) a basis for R3?
dim(R3) = 3, so any three linearly independent vectors form a basis. Thus,
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the column vectors of B form a basis of R3, while the column vectors of A,
C, and D do not.

(g) Compute AB, BA, AC, etc. Compute A

1
2
3

. Compute A(2~e1 + 3~e3).

Use http://kinetigram.com/mck/LinearAlgebra/JPaisMatrixMult04/classes/
JPaisMatrixMult04.html to check your work.

3. Let A =

[
1 4
2 −1

]
. Find all matrices which commute with A.

Write B =

[
a b
c d

]
. Then the equality AB = BA can be expressed as[

a+ 4c b+ 4d
2a− c 2b− d

]
=

[
a+ 2b 4a− b
c+ 2d 4c− d

]
.

This gives us the four equations a+ 4c = a+ 2b, b+ 4d = 4a− b, 2a− c = c+ 2d,
and 2b− d = 4c− d. Either solve for a, b, c, and d by Gauss-Jordan, or proceed
by inspection (e.g., the first and last equations show b = 2c) to find that all

matrices of the form

[
a b
b/2 a− b/2

]
commute with A.

(Alternatively, if you solve for b and d instead of c and d, you’ll get the slightly

nicer looking–but equivalent–form

[
a 2c
c a− c

]
.)

4. Find the matrices of the linear transformations T from R2 to R2 which represent:

(a) a scaling by a factor of 3.[
3 0
0 3

]
(b) a 30◦ counterclockwise rotation.[√

3/2 −1/2

1/2
√

3/2

]
(c) a 45◦ clockwise rotation. (Hint: use a negative angle)[ √

2/2
√

2/2

−
√

2/2
√

2/2

]
(d) a reflection about the line spanned by

[
−3
4

]
.

The unit vector ~u =

[
−3/5
4/5

]
spans this line (call it L). Then the transfor-
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mation projL(~x) has matrix

1

25

[
9 −12
−12 16

]
,

so refL(~x) = 2projL(~x)− ~x has matrix

1

25

[
−7 −24
−24 7

]
.

(−7/25 = 2(9/25)− 1, −24/25 = 2(−12/25), etc.)

(e) an orthogonal projection onto the line spanned by

[
5
12

]
.

(Hint: 52 + 122 = 132)

The unit vector ~u =

[
5/13
12/13

]
spans this line (call it L). Then the transfor-

mation projL(~x) has matrix

1

169

[
25 60
60 144

]
.

(f) a vertical shear of strength 2 (that is, coming from a line with slope 2)[
1 0
2 1

]
5. Interpret the linear transformations with the following matrices geometrically:

(a)

[
0 −1
1 0

]
90◦ counterclockwise rotation

(b)

[
1 3
0 1

]
horizontal shear of strength 3 (that is, coming from a line with slope 1/3)

(c)

[√
3 −1

1
√

3

]
30◦ counterclockwise rotation and a scaling by a factor of 2
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