
The exam will cover Section 1.1-Section 3.3 and be composed approximately as fol-
lows:

True/False 30%
Definitions 10%
Proofs 10%
Computational 50%

In each section below, I’ll explain what I mean by the category labels and then
give a few examples of what a problem in that category might look like.

1 True/False

You will get a list of approximately six true/false questions with varying levels of
difficulty, primarily on the more theoretical concepts. Some may come directly from
statements of theorems, while others may require you to extrapolate slightly from
a theorem or to think conceptually. You do not need to show any work on these.
By “true,” I will mean “always true.” Thus, if something is sometimes true and
sometimes false, you should answer false. For example, the statement “If A and B
are n × n matrices, then AB = BA” is false since this is not always the case, even
though this is true for certain matrices. If a statement begins “there exists,” then it
is just asking whether the property is true for at least one case, so for example the
statement “There exists an n×n matrix A such that A2 = A” is true, since In is one
such matrix. Thinking geometrically may help you to find examples for “there exist”
questions.

To prepare for these, make sure you know all of the theorems we’ve covered (the
statements, not the proofs) and understand the geometric interpretations from Sec-
tion 2.2.

Examples
True or false:

1. If a system of equations has fewer equations than unknowns, then it has infinitely
many solutions.

2. If A in an n×m matrix, then rank(A) ≤ n.

3. If A in an n× n matrix and A~x = ~0, then ~x = ~0.

4. If a square matrix has two equal columns, then it is not invertible.
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5. If a square matrix has two equal rows, then it is not invertible.

6. There exists a 2× 2 matrix A such that rank(A) = 0.

7. There exists a 2× 2 matrix A such that rank(A) = 4.

8. If A and B are n× n matrices, then (AB)2 = A2B2.

9. For all n× n matrices A, B, and C, (AB)C = A(BC).

10. A matrix of the form

[
a −b
b a

]
with a2 + b2 = 1 must be invertible.

11. There exists a 2× 2 matrix A such that A3 = I2 but A 6= I2.

12. There exists a 2× 2 matrix A such that A4 = I2 but A2 6= I2.

13. There exists a 2× 2 matrix A such that A2 = I2 but A4 6= I2.

14. If A is a 3× 4 matrix, then A~x = ~0 has infinitely many solutions.

15. The solutions to

[
1 1
1 1

]
~x = ~e1 form a line in R2.

16. Let A and B be n× n matrices. If ~v is in ker(B), then ~v is in ker(AB).

17. Let A and B be n× n matrices. If ~v is in ker(B), then ~v is in ker(BA).

18. If ~x = ~v and ~x = ~w are two solutions to A~x = ~b, then ~x = ~v + ~w is a solution
too.

19. If ~v and ~w are in im(A), then 2~v − 7~w is in im(A) too.

20. If A~v = A~w, then ~v − ~w is in ker(A).

21. Let A be an n×m matrix. Then im(A) is a subspace of Rn.

22. Let A be an n×m matrix. Then im(A) is a subspace of Rm.

23. If ker(A) = {~0} for an n×m matrix A, then n ≤ m.

24. If A is an upper-triangular matrix, then A is invertible.

25. If A is a permutation matrix, then A~e1 = ~ei for some i.

26. Let A be a n×m matrix. Then dim(im(A)) + dim(ker(A)) = n.

27. Sec. 2.4: 67-75

28. The chapter reviews
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2 Definitions

You will either be asked to define a term or two. Your definitions must be precise
and accurate to receive full credit. It’s not necessary to use the exact words that the
book does, as long as your definition is equivalent. You should know anything that
the book labels as a “Definition” as well as reduced row-echelon form (p. 16).

Examples
Question: Define the kernel of an n×m matrix A.
Answer: The kernel of A is the set of all solutions of the equation A~x = ~0.

Question: Define what it means to say that ~b is a linear combination of the vectors
~v1, . . . , ~vm in Rn.

Answer: We say that a vector ~b in Rn is a linear combination of the vectors ~v1, . . . , ~vm

in Rn if there exist scalars x1, . . . , xm in R such that

~b = x1 ~v1 + · · ·+ xm ~vm.

Note that the following terms are defined in the text but not labeled as definitions:
square matrix, diagonal matrix, upper/lower triangular matrix (p. 9), homogeneous
system (p.35, #47), standard vectors (p. 47), all of the geometric terminology from
Section 2.2 (projections, reflections, etc.), permutation matrix (p. 89, #42) hyper-
plane (p. 134, #33). I won’t ask you to define these, but you should know what these
words mean since they may be used in other questions on the exam.

3 Proofs

You will be asked to provide a proof of something. This will be something which
can be proven in a fairly straightforward manner and without being too long. It is
possible that you will be asked to prove a theorem seen in class, but memorizing
proofs from the book is probably not a good use of your time. Rather, make sure you
understand and know how to use our techniques for showing:

1. that two vectors/matrices are equal (by showing the components/columns are
equal).

2. that a transformation is linear (by showing T (~v+ ~w) = T (~v)+T (~w) and T (k~v) =
kT (~v)).

3. that a matrix is invertible (see Summary 3.3.10; one technique is to show that

A~x = ~0 has the unique solution ~x = ~0; another is to find the inverse explicitly).
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4. that a given set is or is not a subspace of Rn (by applying Definition 3.2.1).

You may use any theorems we’ve seen in your proof (unless you’re being asked to
prove the theorem itself, of course).

Examples

1. (vector equality) Let A be an n×m matrix and ~v and ~w vectors in Rm. Prove
that A(~v + ~w) = A~v + A~w.

2. (matrix equality) Let A be an n × p matrix and C and D be p × m matrices.
Prove that A(C + D) = AC + AD.

3. (matrix equality) Let T be a linear transformation from Rm to Rn. Prove that
the matrix of T is

A =
[
T (~e1) . . . T ( ~em)

]
.

4. (linear transformation) Let T (~x) be a linear transformation from Rm to Rn.
Let c be a scalar in R. Define S(~x) = cT (~x). Prove that S(~x) is a linear
transformation.

5. (invertible) Let A and B be n× n matrices such that BA = In. Prove that A is
invertible. (This is probably trickier than what you’ll see on the exam.)

6. (invertible) Let A and B be invertible n×n matrices. Prove that AB is invertible.

7. (subspace) Let T be a linear transformation from Rm to Rn. Then ker(T ) is a
subspace of Rn.

8. (subspace) Let V and W be subspaces of Rn. Define V + W to be the set
{~v + ~w

∣∣ ~v is in V and ~w is in W}. Determine whether V + W is a subspace of
Rn.

(I probably won’t ask you to prove one of those specific examples, so be sure you’re
focusing on how the techniques are used and not on the details.)

4 Computational

These will focus on applying the various techniques we’ve seen to find numerical
answers to problems. In particular, you may be asked to:

1. Solve a system of linear equations (Sec. 1.1, #1-10, Sec. 1.2, #1-12)

2. Row-reduce a matrix (Gauss-Jordan elimination) (Sec. 1.2, #1-12); compute its
rank (Sec. 1.3, #2-4)
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3. Put a system of equations in matrix form (Sec. 1.3, #9)

4. Matrix/vector algebra (sums, products, dot products, scalar multiples, etc.)
(Sec. 1.3, #10-20, Sec. 2.3, #1-14)

5. Find the matrices which commute with a given matrix. (Sec. 2.3, #17-26)

6. Find the inverse of a matrix/linear transformation (Sec. 2.4, #1-20)

7. Find the matrices of linear transformations defined geometrically; interpret a
given matrix/linear transformation geometrically (Sec. 2.2)

8. Find a basis for the image and kernel of a linear transformation; determine their
dimensions (Sec. 3.3, #1-25)

9. Determine if a set of vectors is linearly independent; find linear relations between
vectors; express one vector as a linear combination of others (Sec. 3.2, #10-26)

10. Determine if a set of vectors is a basis for Rn (Sec. 3.3, #27-28)

Note that you can check your answers to many of these. After solving a system of
linear equations, plug your answer back in to see if it works. (If you’re taking rref(A)
for some reason other than solving a system and so don’t have an augmented matrix,
you can still check your work this way since rref(

[
A | ~0

]
) =

[
rref(A) | ~0

]
.) After

you find the matrices that commute, take both products (AB and BA) to verify that
they’re the same. After finding the inverse, verify that AA−1 = In. After finding a
matrix with a geometric interpretation, check that it does what it’s supposed to on a
few vectors (such as ~e1 and ~e2). After finding the kernel, make sure the vectors in it

really are solutions to A~x = ~0. Use vectors in the kernel to look for linear relations
in the image.

Examples

You should be able to create your own examples easily by making up your own
matrices/systems/etc. (or use the exercises in the book above), but a few follow
nonetheless.

1. Use Gauss-Jordan elimination to find all solutions of the system

3x + 2y − 2z − w = 3
x + y + z + 2w = 5

3y − 3z − 3w = 0.
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2. Let

A =

 1 3 7
−2 1 0
1 1 3

 , B =

 2 −6 24
1 −2 6
−1 2 −4

 ,

C =

1 2 −1
3 6 −3
2 4 −2

 , D =

 1 3 7 5
−2 1 0 −3
1 1 3 3

 .

(a) Find rref(A).

(b) Find rank(A).

(c) Is A invertible? If so, find A−1. If not, explain how you know that it isn’t.

(d) Find a basis of im(A) and ker(A) and compute their dimensions.

(e) Let ~v1, ~v2, ~v3 (and ~v4 for D) be the columns of A. Are they linearly inde-
pendent? If not, find a linear relation among them and use it to express one
vector as a linear combination of the other two.

(f) Are ~v1, ~v2, ~v3 (and ~v4 for D) a basis for R3?

(g) Same questions for B, C, and D.

(h) Compute AB, BA, AC, etc. Compute A

1
2
3

. Compute A(2~e1 + 3~e3).

3. Let A =

[
1 4
2 −1

]
. Find all matrices which commute with A.

4. Find the matrices of the linear transformations T from R2 to R2 which represent:

(a) a scaling by a factor of 3.

(b) a 30◦ counterclockwise rotation.

(c) a 45◦ clockwise rotation. (Hint: use a negative angle)

(d) a reflection about the line spanned by

[
−3
4

]
.

(e) an orthogonal projection onto the line spanned by

[
5
12

]
.

(Hint: 52 + 122 = 132)

(f) a vertical shear of strength 2 (that is, coming from a line with slope 2)
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5. Interpret the linear transformations with the following matrices geometrically:

(a)

[
0 −1
1 0

]
(b)

[
1 3
0 1

]
(c)

[√
3 −1

1
√

3

]
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