Section 7.1

1. Suppose $A \vec{v}=\lambda \vec{v}$. Then $A^{3} \vec{v}=A^{2}(A \vec{v})=A^{2}(\lambda \vec{v})=\lambda A^{2} \vec{v}=\cdots=\lambda^{3} \vec{v}$. Thus, \vec{v} is an eigenvector of A^{3} with eigenvalue λ^{3}. Work for the rest of \#1-6 is similar.
2. Yes; eigenvalue $\frac{1}{\lambda}$.
3. Yes; eigenvalue 7λ.
4. Suppose $A \vec{v}=\lambda \vec{v}$ and $B \vec{v}=\mu \vec{v}$. Then $A B \vec{v}=A \mu \vec{v}=\mu A \vec{v}=\mu \lambda \vec{v}$, so \vec{v} is an eigenvector of $A B$ (with eigenvalue $\mu \lambda$.)
5. Solve $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]=-\left[\begin{array}{l}2 \\ 3\end{array}\right]$ for a, b, c, d.
6. Let A be the matrix of this transformation. If \vec{v} is any vector on L, it will reflect to itself, so $A \vec{v}=\vec{v}$ and so \vec{v} is an eigenvector with eigenvalue 1. If \vec{w} is perpendicular to L (that is, \vec{w} is in L^{\perp}), it will reflect straight across L, so $A \vec{w}=-\vec{w}$ and so \vec{w} is an eigenvector with eigenvalue -1 . It's clear geometrically that no other vectors will map to a scalar multiple of themselves, so these are the only eigenvectors and eigenvalues. To find an eigenbasis, pick one vector from L and one vector from L^{\perp}.
7. Suppose that the eigenvalue corresponding to $\overrightarrow{e_{i}}$ is λ_{i} for $i=1 \ldots, n$. Note $A=A I_{n}=A\left[\overrightarrow{e_{1}} \ldots \overrightarrow{e_{n}}\right]=\left[A \overrightarrow{e_{1}} \ldots A \overrightarrow{e_{n}}\right]=\left[\lambda_{1} \overrightarrow{e_{1}} \ldots \lambda_{n} \overrightarrow{e_{n}}\right]$. By varying the eigenvalues, we can get out any diagonal matrix, so V is the space of diagonal matrices and has dimension n (since there are n diagonal entries, corresponding to the n choices $\lambda_{1}, \ldots, \lambda_{n}$.
8. As in our first example in class, parts (a) and (b) will let us find an eigenbasis, which we use in part (c).
(a) Set $\overrightarrow{v_{0}}=\vec{v}(0)=\left[\begin{array}{l}100 \\ 100\end{array}\right]$. Check that $A \overrightarrow{v_{0}}=2 \overrightarrow{v_{0}}$ so, $\overrightarrow{v_{0}}$ is an eigenvector with eigenvalue 2. Then $\vec{v}(t)=A^{t} \overrightarrow{v_{0}}=2^{t} \overrightarrow{v_{0}}$. Thus, $h(t)=100\left(2^{t}\right)$ and $f(t)=100\left(2^{t}\right)$. (Thus, the population of hares and foxes will increase exponentially.)
(b) Set $\overrightarrow{v_{0}}=\vec{v}(0)=\left[\begin{array}{l}200 \\ 100\end{array}\right]$. Proceeding as above, we see that $\overrightarrow{v_{0}}$ is an eigenvector with eigenvalue 3 and $\vec{v}(t)=3^{t} \overrightarrow{v_{0}}$, so $h(t)=200\left(3^{t}\right)$ and $f(t)=100\left(3^{t}\right)$. (Again, both populations increase exponentially.)
(c) Set $\overrightarrow{v_{0}}=\vec{v}(0)=\left[\begin{array}{l}600 \\ 500\end{array}\right]$. The eigenvectors in the previous two parts form an eigenbasis and we find (using Section 3.4 techniques or inspection) that $\left[\begin{array}{l}500 \\ 700\end{array}\right]=4\left[\begin{array}{l}100 \\ 100\end{array}\right]+\left[\begin{array}{l}200 \\ 100\end{array}\right]$. Thus, we find $\vec{v}(t)=4\left(2^{t}\right)\left[\begin{array}{l}100 \\ 100\end{array}\right]+\left(3^{t}\right)\left[\begin{array}{l}200 \\ 100\end{array}\right]$ and so $h(t)=400\left(2^{t}\right)+200\left(3^{t}\right)$ and $f(t)=400\left(2^{t}\right)+100\left(3^{t}\right)$. (Again, both populations increase exponentially.)

Section 7.2

22. By Theorem 6.2.1, $\operatorname{det}\left(A-\lambda I_{n}\right)=\operatorname{det}\left(\left(A-\lambda I_{n}\right)^{\mathrm{T}}\right)=\operatorname{det}\left(A^{\mathrm{T}}-\lambda I_{n}\right)$, so both A and A^{T} have the same characteristic polynomial, and so the same eigenvalues with the same algebraic multiplicities.
23. By Theorem 7.2.4, the characteristic polynomial of A is $f_{A}(\lambda)=\lambda^{2}-5 \lambda-14$. Factoring, we have eigenvalues $\lambda=-2$ and $\lambda=7$. (Note that this technique only worked since we were dealing with a 2×2 matrix: if the matrix were larger, we wouldn't have been able to find all of the coefficients of the characteristic polynomial in this way.)
24. By direct computation,

$$
\begin{aligned}
\operatorname{tr}(A B) & =\left(\text { sum of all products of the form } a_{i j} b_{j i}\right) \\
& =\left(\text { sum of all products of the form } b_{j i} a_{i j}\right)=\operatorname{tr}(B A) .
\end{aligned}
$$

41. Write $B=S^{-1} A S$ for some matrix S and use $\# 40$: $\operatorname{tr}(B)=\operatorname{tr}\left(S^{-1} A S\right)=$ $\operatorname{tr}\left(\left(S^{-1} A\right) S\right)=\operatorname{tr}\left(S\left(S^{-1} A\right)\right)=\operatorname{tr}(A)$.
42. Take the trace of both sides. By \#40, the trace of the left-hand side will be 0 , but the trace of the right-hand side is n. This is a contradiction, so no such matrices exist.
43. Hint: There are at least a couple of ways to do this; try to use either $\# 41$ or $\# 43$. The matrices A and B in $\# 41$ or $\# 43$ may not be the same as the matrices A and B in \#44.

Section 7.3

28. Note $J_{n}(k)$ is triangular, so its diagonal entries are its eigenvalues. Thus, the only eigenvalue is k. Also $E_{k}=\operatorname{ker}\left(J_{n}(k)-k I_{n}\right)=\operatorname{span}\left\{\vec{e}_{1}\right\}$ (all of the other columns are linearly independent since each has a leading 1), so the geometric multiplicity is 1 and the algebraic multiplicity is n.
29. The geometric multiplicity of λ as an eigenvalue of A is

$$
\operatorname{dim}\left(\operatorname{ker}\left(A-\lambda I_{n}\right)\right)=n-\operatorname{rank}\left(A-\lambda I_{n}\right)
$$

by Rank-Nullity.
The geometric multiplicity of λ as an eigenvalue of A^{T} is

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{ker}\left(A^{\mathrm{T}}-\lambda I_{n}\right)\right) & =\operatorname{dim}\left(\operatorname{ker}\left(\left(A-\lambda I_{n}\right)^{\mathrm{T}}\right)\right) \\
& =n-\operatorname{rank}\left(\left(A-\lambda I_{n}\right)^{\mathrm{T}}\right) \\
& =n-\operatorname{rank}\left(A-\lambda I_{n}\right)
\end{aligned}
$$

by Rank-Nullity and Theorem 5.3.9c. Thus, the two geometric multiplicities are equal.

Section 7.4

37. Yes, $\lambda^{2}-7 \lambda+7$ is the characteristic polynomial for both, so they have the same real eigenvalues $\lambda_{1,2}=\frac{7 \pm \sqrt{21}}{2}$ and so are both similar to the diagonal matrix $\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ (by Theorem 7.4.4) and so A is similar to B by Theorem 3.4.6 (parts b and c).
38. No! For example, consider $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$.

But wait! Isn't this the same problem as $\# 37$ with the numbers changed?
Not quite. Note that $\lambda^{2}-7 \lambda+7$ had two distinct roots (and so two distinct eigenvalues) while $\lambda^{2}-4 \lambda+4$ has only one distinct root (and so the eigenvalue 2 has algebraic multiplicity 2 , but in the counterexample given above it has a geometric multiplicity of only 1).

Section 7.5

12. First verify that $\overline{z+w}=\bar{z}+\bar{w}, \overline{z w}=\bar{z} \bar{w}$, and $\overline{\left(z^{n}\right)}=\bar{z}^{n}$. (These are easy to check, from the definitions.)
Suppose that λ_{0} is a complex root of $f(\lambda)=a_{n} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}$ where the coefficients a_{n}, \ldots, a_{0} are real. Then $a_{n} \lambda_{0}^{n}+\cdots+a_{1} \lambda_{0}+a_{0}=0$ and the result follows by taking the conjugate of both sides and using the above properties. (Note that since a_{i} is real, $\overline{a_{i}}=a_{i}$.)
13. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the eigenvalues of A (repeated according to algebraic multiplicity, so $\lambda_{1}=\lambda_{2} \neq \lambda_{3}$). Then $\operatorname{tr}(A)=1=2 \lambda_{2}+\lambda_{3}$ and $\operatorname{det}(A)=3=\lambda_{2}^{2} \lambda_{3}$. Solving for λ_{2}, λ_{3}, we see $\lambda_{1}=\lambda_{2}=-1$ and $\lambda_{3}=3$.
14. (Note that this problem shows that complex eigenvalues and eigenvectors of real matrices always come in conjugate pairs. This is often useful. Compare this to \#12 applied to the characteristic polynomial.)
(a) Recall $\overline{z+w}=\bar{z}+\bar{w}, \overline{z w}=\bar{z} \bar{w}$ from $\# 12$. Then the $i j$ th entry of $\overline{A B}$ is

$$
\overline{\sum_{k=1}^{p} a_{i k} b_{k j}}=\sum_{k=1}^{p} \overline{a_{i k} b_{k j}}=\sum_{k=1}^{p} \overline{a_{i k}} \overline{b_{k j}},
$$

which is the $i j$ th entry of $\bar{A} \bar{B}$.
(b) We will use part (a), where B is the $n \times 1$ matrix $\vec{v}+\imath \vec{w}$. Let $\lambda=p+\imath q$. Then $A B=\lambda B$ and so $A \bar{B}=\overline{A B}=\overline{\lambda B}=\bar{\lambda} \bar{B}$, so $A(\vec{v}-\imath \vec{w})=(p-\imath q)(\vec{v}-\imath \vec{w})$.

