
Section 7.1

1. Suppose A~v = λ~v. Then A3~v = A2(A~v) = A2(λ~v) = λA2~v = · · · = λ3~v. Thus, ~v
is an eigenvector of A3 with eigenvalue λ3. Work for the rest of #1-6 is similar.

2. Yes; eigenvalue 1
λ
.

4. Yes; eigenvalue 7λ.

6. Suppose A~v = λ~v and B~v = µ~v. Then AB~v = Aµ~v = µA~v = µλ~v, so ~v is an
eigenvector of AB (with eigenvalue µλ.)

11. Solve

[
a b
c d

] [
2
3

]
= −

[
2
3

]
for a, b, c, d.

15. Let A be the matrix of this transformation. If ~v is any vector on L, it will
reflect to itself, so A~v = ~v and so ~v is an eigenvector with eigenvalue 1. If ~w
is perpendicular to L (that is, ~w is in L⊥), it will reflect straight across L, so
A~w = −~w and so ~w is an eigenvector with eigenvalue −1. It’s clear geometrically
that no other vectors will map to a scalar multiple of themselves, so these are the
only eigenvectors and eigenvalues. To find an eigenbasis, pick one vector from L
and one vector from L⊥.

43. Suppose that the eigenvalue corresponding to ~ei is λi for i = 1 . . . , n. Note
A = AIn = A

[
~e1 . . . ~en

]
=
[
A~e1 . . . A~en

]
=
[
λ1~e1 . . . λn ~en

]
. By varying the

eigenvalues, we can get out any diagonal matrix, so V is the space of diagonal
matrices and has dimension n (since there are n diagonal entries, corresponding
to the n choices λ1, . . . , λn.

50. As in our first example in class, parts (a) and (b) will let us find an eigenbasis,
which we use in part (c).

(a) Set ~v0 = ~v(0) =

[
100
100

]
. Check that A~v0 = 2~v0 so, ~v0 is an eigenvector

with eigenvalue 2. Then ~v(t) = At ~v0 = 2t ~v0. Thus, h(t) = 100(2t) and
f(t) = 100(2t). (Thus, the population of hares and foxes will increase expo-
nentially.)

(b) Set ~v0 = ~v(0) =

[
200
100

]
. Proceeding as above, we see that ~v0 is an eigenvector

with eigenvalue 3 and ~v(t) = 3t ~v0, so h(t) = 200(3t) and f(t) = 100(3t).
(Again, both populations increase exponentially.)

1



(c) Set ~v0 = ~v(0) =

[
600
500

]
. The eigenvectors in the previous two parts form

an eigenbasis and we find (using Section 3.4 techniques or inspection) that[
500
700

]
= 4

[
100
100

]
+

[
200
100

]
. Thus, we find ~v(t) = 4(2t)

[
100
100

]
+ (3t)

[
200
100

]
and so h(t) = 400(2t) + 200(3t) and f(t) = 400(2t) + 100(3t). (Again, both
populations increase exponentially.)

Section 7.2

22. By Theorem 6.2.1, det(A − λIn) = det((A − λIn)T) = det(AT − λIn), so both
A and AT have the same characteristic polynomial, and so the same eigenvalues
with the same algebraic multiplicities.

38. By Theorem 7.2.4, the characteristic polynomial of A is fA(λ) = λ2 − 5λ − 14.
Factoring, we have eigenvalues λ = −2 and λ = 7. (Note that this technique
only worked since we were dealing with a 2×2 matrix: if the matrix were larger,
we wouldn’t have been able to find all of the coefficients of the characteristic
polynomial in this way.)

40. By direct computation,

tr(AB) = (sum of all products of the form aijbji)

= (sum of all products of the form bjiaij) = tr(BA).

41. Write B = S−1AS for some matrix S and use #40: tr(B) = tr(S−1AS) =
tr((S−1A)S) = tr(S(S−1A)) = tr(A).

43. Take the trace of both sides. By #40, the trace of the left-hand side will be
0, but the trace of the right-hand side is n. This is a contradiction, so no such
matrices exist.

44. Hint: There are at least a couple of ways to do this; try to use either #41 or
#43. The matrices A and B in #41 or #43 may not be the same as the matrices
A and B in #44.

Section 7.3

28. Note Jn(k) is triangular, so its diagonal entries are its eigenvalues. Thus, the
only eigenvalue is k. Also Ek = ker(Jn(k) − kIn) = span{~e1} (all of the other
columns are linearly independent since each has a leading 1), so the geometric
multiplicity is 1 and the algebraic multiplicity is n.
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32. The geometric multiplicity of λ as an eigenvalue of A is

dim(ker(A− λIn)) = n− rank(A− λIn)

by Rank-Nullity.

The geometric multiplicity of λ as an eigenvalue of AT is

dim(ker(AT − λIn)) = dim(ker((A− λIn)T))

= n− rank((A− λIn)T)

= n− rank(A− λIn)

by Rank-Nullity and Theorem 5.3.9c. Thus, the two geometric multiplicities are
equal.

Section 7.4

37. Yes, λ2− 7λ+ 7 is the characteristic polynomial for both, so they have the same

real eigenvalues λ1,2 =
7±
√

21

2
and so are both similar to the diagonal matrix[

λ1 0
0 λ2

]
(by Theorem 7.4.4) and so A is similar to B by Theorem 3.4.6 (parts

b and c).

38. No! For example, consider A =

[
2 0
0 2

]
and B =

[
2 1
0 2

]
.

But wait! Isn’t this the same problem as #37 with the numbers changed?
Not quite. Note that λ2 − 7λ + 7 had two distinct roots (and so two distinct
eigenvalues) while λ2 − 4λ+ 4 has only one distinct root (and so the eigenvalue
2 has algebraic multiplicity 2, but in the counterexample given above it has a
geometric multiplicity of only 1).

Section 7.5

12. First verify that z + w = z + w, zw = z̄w̄, and (zn) = zn. (These are easy to
check, from the definitions.)

Suppose that λ0 is a complex root of f(λ) = anλ
n + · · · + a1λ + a0 where the

coefficients an, . . . , a0 are real. Then anλ
n
0 + · · · + a1λ0 + a0 = 0 and the result

follows by taking the conjugate of both sides and using the above properties.
(Note that since ai is real, ai = ai.)

27. Let λ1, λ2, λ3 be the eigenvalues of A (repeated according to algebraic multiplic-
ity, so λ1 = λ2 6= λ3). Then tr(A) = 1 = 2λ2 + λ3 and det(A) = 3 = λ2

2λ3.
Solving for λ2, λ3, we see λ1 = λ2 = −1 and λ3 = 3.
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42. (Note that this problem shows that complex eigenvalues and eigenvectors of real
matrices always come in conjugate pairs. This is often useful. Compare this to
#12 applied to the characteristic polynomial.)

(a) Recall z + w = z + w, zw = z̄w̄ from #12. Then the ijth entry of AB is

p∑
k=1

aikbkj =

p∑
k=1

aikbkj =

p∑
k=1

aikbkj,

which is the ijth entry of ĀB̄.

(b) We will use part (a), where B is the n×1 matrix ~v+ı ~w. Let λ = p+ıq. Then
AB = λB and so AB = AB = λB = λ̄B, so A(~v − ı ~w) = (p− ıq)(~v − ı ~w).
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