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. Yes; eigenvalue

Suppose AU = A\v. Then A30 = A%(AV) = A%(\0) = NA?0 = --- = \30. Thus, ¢
is an eigenvector of A% with eigenvalue A\3. Work for the rest of #1-6 is similar.
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. Yes; eigenvalue TA.

Suppose AU = A\ and Bv = puv. Then ABU = Aut = pAv = pv, so v is an
eigenvector of AB (with eigenvalue u\.)

a b| |2 2
Solve L d] [3] = — {31 for a, b, c,d.

Let A be the matrix of this transformation. If ¢ is any vector on L, it will
reflect to itself, so AU = ¢ and so ¥ is an eigenvector with eigenvalue 1. If
is perpendicular to L (that is, w is in L1), it will reflect straight across L, so
Aw = —w and so W is an eigenvector with eigenvalue —1. It’s clear geometrically
that no other vectors will map to a scalar multiple of themselves, so these are the
only eigenvectors and eigenvalues. To find an eigenbasis, pick one vector from L
and one vector from L*.

Suppose that the eigenvalue corresponding to ¢€; is A; for ¢ = 1...,n. Note
A=Al = A [e} ) ..eﬂ = [Ae} ...Ae}] = [)\16} . ../\neZ] . By varying the
eigenvalues, we can get out any diagonal matrix, so V' is the space of diagonal
matrices and has dimension n (since there are n diagonal entries, corresponding
to the n choices A\q,..., \,.

As in our first example in class, parts (a) and (b) will let us find an eigenbasis,
which we use in part (c).

(a) Set @ = F(0) = ng .
with eigenvalue 2. Then ¥(t) = Alvy = 2'0. Thus, h(t) = 100(2") and
f(t) =100(2%). (Thus, the population of hares and foxes will increase expo-
nentially.)

Check that Avy = 205 so, vy is an eigenvector

S S 200
(b) Set vy = v(0) = {100

with eigenvalue 3 and v(t) = 3'vg, so h(t) = 200(3") and f(¢) = 100(3").
(Again, both populations increase exponentially.)

} . Proceeding as above, we see that vy is an eigenvector



600
500"
an eigenbasis and we find (using Section 3.4 techniques or inspection) that

{500} — 4 FOO} + {200} Thus, we find §() = 4(2") FOO} + (39 FOO}

(c) Set vy = ¥(0) = The eigenvectors in the previous two parts form

700 100 1001" 100 100
and so h(t) = 400(2") 4+ 200(3") and f(t) = 400(2") + 100(3"). (Again, both
populations increase exponentially.)
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By Theorem 6.2.1, det(A — \I,,) = det((A — AI,)T) = det(AT — \I,,), so both
A and AT have the same characteristic polynomial, and so the same eigenvalues
with the same algebraic multiplicities.

By Theorem 7.2.4, the characteristic polynomial of A is f4(\) = A\? — 5\ — 14.
Factoring, we have eigenvalues A = —2 and A = 7. (Note that this technique
only worked since we were dealing with a 2 x 2 matrix: if the matrix were larger,
we wouldn’t have been able to find all of the coefficients of the characteristic
polynomial in this way.)

By direct computation,

tr(AB) = (sum of all products of the form a;;b;;)
= (sum of all products of the form bj;a;;) = tr(BA).

Write B = S7'AS for some matrix S and use #40: tr(B) = tr(S7'AS) =
tr((S71A)S) = tr(S(S71A)) = tr(A).

Take the trace of both sides. By #40, the trace of the left-hand side will be
0, but the trace of the right-hand side is n. This is a contradiction, so no such
matrices exist.

Hint: There are at least a couple of ways to do this; try to use either #41 or
#43. The matrices A and B in #41 or #43 may not be the same as the matrices
A and B in #44.
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28.

Note J,(k) is triangular, so its diagonal entries are its eigenvalues. Thus, the
only eigenvalue is k. Also Ej = ker(J,,(k) — kI,,) = span{e;} (all of the other
columns are linearly independent since each has a leading 1), so the geometric
multiplicity is 1 and the algebraic multiplicity is n.



32.

The geometric multiplicity of A as an eigenvalue of A is
dim(ker(A — Al,,)) = n — rank(A — \1[,,)
by Rank-Nullity.
The geometric multiplicity of A as an eigenvalue of A% is
dim(ker(A" — \I,,)) = dim(ker((A — AI,,)T))
=n —rank((A — \I,,)T)
=n —rank(A — \I,,)

by Rank-Nullity and Theorem 5.3.9¢. Thus, the two geometric multiplicities are
equal.
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Yes, A2 — T\ + 7 is the characteristic polynomial for both, so they have the same

7+ 421
2

real eigenvalues \; o = and so are both similar to the diagonal matrix

0 Ao
b and c).

{)\1 O] (by Theorem 7.4.4) and so A is similar to B by Theorem 3.4.6 (parts

2 0 2 1
' 1 pu— pu—
No! For example, consider A {O 2} and B [O 2}.

But wait! Isn’t this the same problem as #37 with the numbers changed?
Not quite. Note that A*> — 7\ + 7 had two distinct roots (and so two distinct
eigenvalues) while A\* — 4\ + 4 has only one distinct root (and so the eigenvalue

2 has algebraic multiplicity 2, but in the counterexample given above it has a
geometric multiplicity of only 1).
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First verify that z + w = Z + w, Zw = Zw, and (2") = z". (These are easy to
check, from the definitions.)

Suppose that \g is a complex root of f(\) = a,A" + -+ + a1 A + ag where the
coefficients a,, ..., ag are real. Then a,\j + -+ + a1\g + ap = 0 and the result
follows by taking the conjugate of both sides and using the above properties.
(Note that since a; is real, @; = a;.)

Let A1, A2, A3 be the eigenvalues of A (repeated according to algebraic multiplic-
ity, S0 Ay = Xy # A3). Then tr(A) = 1 = 2)\y + A3 and det(A) = 3 = \2\s.
Solving for As, A3, we see A\ = Ay = —1 and A3 = 3.



42. (Note that this problem shows that complex eigenvalues and eigenvectors of real
matrices always come in conjugate pairs. This is often useful. Compare this to

#12 applied to the characteristic polynomial.)
(a) Recall z + w =z + W, zw = zw from #12. Then the ijth entry of AB is

p p p

> anbi; = anbe; =Y G,

k=1 k=1 k=1

which is the ijth entry of AB.

(b) We will use part (a), where B is the n x 1 matrix v'+u. Let A = p+2g. Then
AB = AB and so AB = AB = \B = AB, so A(V — ) = (p — 1q) (¥ — ).



