Section 6.1

43. Note that every entry of $-A$ is a corresponding entry of A multiplied by -1 . Since each pattern P contains n entries of A, a pattern P^{\prime} obtained from the same entries as P will have $\operatorname{prod}\left(P^{\prime}\right)=(-1)^{n} \operatorname{prod}(P)$ and so $\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$. (Note you can also do this easily with the Section 6.2 material, since we know what the effect of multiplying a row by a scalar is.)
44. There is only one nonzero pattern P in a permutation matrix. $\operatorname{prod}(P)=1$ and $\operatorname{sgn}(P)= \pm 1$ (depending on the number of inversions), so for a permutation matrix $A, \operatorname{det}(A)= \pm 1$.

Section 6.2

31. (Feel free to just read this problem and not actually do it, if you want.)
(a) If $n=1$, then $A=\left[\begin{array}{cc}1 & 1 \\ a_{0} & a_{1}\end{array}\right]$ and $\operatorname{det}(A)=a_{1}-a_{0}$, so the product formula holds.
(b) The idea here is a technique known as "proof by induction." We'll show that if it holds for $n-1$, then it holds for n also. Then, since we know it holds for $n=1$ from the first part, this will show it holds for $n=2$. Then, reapplying the result will show that it holds for $n=3$, and so on, so that it in fact holds for all positive integers n.
Suppose that the formula holds for $(n-1) \times(n-1)$ matrices and let $f(t)$ be as defined in the problem. Each pattern in the matrix has one and only one component that involves the variable t, each time to a power at most n. Since some terms do contain t^{n}, f will be a polynomial of degree n unless all of the t^{n} terms cancel out. But, the coefficient of t^{n} will be determined by patterns that have no components in the last row or column except for t^{n} : that is, patterns whose last component is t^{n} and other components come from the $n \times n$ submatrix with the last row and column removed. But this is the $(n-1)$ st Vandermonde matrix, so by our assumption, the coefficient of t^{n} will be

$$
k=\prod_{n-1 \geq i>j}\left(a_{i}-a_{j}\right)
$$

which is nonzero since we chose distinct scalars $a_{1}, \ldots a_{n}$.
If we let $t=a_{0}, a_{1} \ldots, a_{n-1}$, then the matrix will have two equal columns and thus determinant 0 . Thus, $f\left(a_{0}\right)=\cdots=f\left(a_{n-1}\right)=0$ and since a degree
n polynomial has at most n roots, it follows from the Fundamental Theorem of Algebra (i.e., the polynomial factoring theorem) that

$$
f(t)=k\left(t-a_{0}\right)\left(t-a_{1}\right) \ldots\left(t-a_{n-1}\right)
$$

where k is the scalar we computed above. Letting $t=a_{n}$, the equation $\operatorname{det}(A)=f\left(a_{n}\right)$ is precisely Vandermonde's formula (since the terms missing in k are precisely those added by setting $t=a_{n}$ in $\left(t-a_{0}\right)\left(t-a_{1}\right) \ldots(t-$ $\left.a_{n-1}\right)$.)
32. Use $\# 31$ with $a_{0}=1, a_{1}=2, a_{2}=3, a_{3}=4, a_{4}=5$. Then the determinant is 288.
37. Apply Theorem 6.2.6 to the equation $A A^{-1}=I_{n}$, so $\operatorname{det}(A) \operatorname{det}\left(A^{-1}=1\right.$. Note that since A and A^{-1} have integers entries, their determinants will be integers (think about the patterns: each is a product of integers and so an integer; then, the determinant is a sum of integers and so an integer). The only way two integers can multiply to 1 is if they are either both 1 or both -1 , so $\operatorname{det}(A)= \pm 1$.

