
Section 5.1

10. ~u · ~v = 2 + 3k + 4. Thus ~u · ~v = 0 if and only if k = −2.

15. Hint: We’ve previously seen that this will be a hyperplane, so we just need to
find three linearly independent vectors perpendicular to ~v (since a hyperplane
in R4 has dimension 3). Since we want ~v · ~x = x1 + 2x2 + 3x3 + 4x4 = 0 (with
~x defined in the obvious way), this is equivalent to finding a basis of the space
ker(

[
1 2 3 4

]
).

Section 5.2

Note: Problems 1-14 and 15-28 are really the same problems, but one is asking
about Gram-Schmidt and one is asking about QR. Since these are both really the
same, you might want to do both for practice, in which case you can check your
answers by adding 14 (so, for example, the answer to #1 is given in the back of the
book as #1 and #15).

32. First, we want to find a basis, period. Then we’ll apply Gram-Schmidt to find an
orthonormal basis. A basis for this plane is just a basis for ker(

[
1 1 1

]
). Or, we

can just find a basis by inspection, since any two linearly independent vectors in

the plane will form a basis. Either way, we end up with ~v1 =

−1
1
0

, ~v2 =

−1
0
1

.

(Or something else: other starting bases are possible, in which case you may end
up with a different orthonormal basis at the end.) By Gram-Schmidt, we end

up with the basis ~u1 =
1√
2

−1
1
0

, ~u2 =
1√
6

−1
−1
2

.

Other solutions are possible if you started with a different ~v1 and ~v2.

Section 5.3

1. Not orthogonal. The column vectors aren’t perpendicular.

5. Not orthogonal. The column vectors will have length 3, not 1.

7. Orthogonal by Theorem 5.3.4a.

11. Orthogonal. Note AT = A−1 by Theorem 5.3.7, which is orthogonal by Theorem
5.3.4b.

21. Symmetric, since (ATA)T = AT(AT)T = ATA.
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23. Not necessarily symmetric (counterexamples are easy to find). In fact,

(A− AT)T = AT − A = −(A− AT),

so A− AT is skew-symmetric. (We’ve used the fact that (A+ B)T = AT + BT,
which we haven’t formally proven, but this is obvious from the definition of the
transpose.)

25. Symmetric, since (ATBTBA)T = ATBTBA. (Check this.)

55. Let Eij be the matrix with a 1 in the ijth position and 0’s elsewhere. Then a
basis for this space consists of the matrices with diagonal entries, E11, . . . , Enn,
as well as all matrices of the form Eij + Eji where i < j. (If you don’t see this,
try looking at the cases n = 2, 3, 4 to see what’s going on.) Thus, the dimension
is equal to the number of entries on the diagonal plus the number of entries
strictly above the diagonal. As the matrices are n×n, there are n entries on the
diagonal. There are n2 entries total and so n2 − n entries not on the diagonal.
Half are above and half are below, so there are n2−n

2
entries strictly above the

diagonal. Thus, the dimension of this space is n+ n2−n
2

= n2+n
2

.

50. (Note: #50 and #51 were not assigned. However, since a question was raised
about uniqueness of the QR factorization, I’m going to provide an answer to #50
nonetheless (and #51 is in the back of the book). Together, they show that QR
factorization is almost unique (but that we need the extra restriction that the
diagonal entries are positive, which is necessary since otherwise we could modify
Q by multiplying a column by −1 and changing R in a corresponding way.)

(a) As A is orthogonal, AT = A−1. As A is upper-triangular, A−1 is lower-
triangular (since AT is) and also upper-triangular (since the inverse of an
upper-triangular matrix is upper-triangular; see Section 2.4 #35, also not
assigned). To be both upper- and lower-triangular, A−1 must be diagonal
and since AT = A−1, it must be that A is diagonal also, so A−1 = A. But
the columns of A are unit vectors (as A is orthogonal), so since the entries
are all positive, it must be that A = In.

(b) Note Q−1
2 Q1 is orthogonal by Theorem 5.3.4 and R2R

−1
1 is upper-triangular

with positive diagonal entries. Thus, Q−1
2 Q1 = R2R

−1
1 is orthogonal and

upper-triangular with positive diagonal entries and so must be equal to In.
Thus, Q1 = Q2 and R1 = R2.

Section 5.4

4. By Theorem 5.4.1, (im(B))⊥ = ker(BT) for any matrix B. Do this for B = AT

and the result follows by taking ⊥ of both sides and applying Theorem 5.1.8d.
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7. Note AT = A, so ker(AT) = ker(A). Applying Theorem 5.4.1, we see (im(A))⊥ =
ker(A). Thus, im(A) and ker(A) are orthogonal complements.

Section 5.5

2. Yes. Note 〈f, g + h〉 = 〈g + h, f〉 = 〈g, f〉+ 〈h, f〉 = 〈f, g〉+ 〈f, h〉.

4. Both are the dot product.

7. Properties (a)-(c) hold for any k (verify this). Since 〈v, v〉 is positive for v 6= 0,
property (d) holds if and only if k > 0. Thus, this is an inner product if and
only if k > 0.

8. It is a linear transformation by properties (b) and (c). If w = 0, then im(T ) = {0}
and ker(T ) = V . If w 6= 0, then im(T ) = R and ker(T ) consists of all vectors
perpendicular to w. (Compare this to #35 in Section 3.1.)

17. Properties (a)-(c) hold for any T (verify this). Since 〈v, v〉 = ‖T (v)‖2, (d) will
hold if and only if T (v) 6= 0 for all v 6= 0, which is to say ker(T ) = {0}.

22. Let g(t) = 1 and apply the Cauchy-Schwarz inequality to f(t) and g(t). Since
‖g(t)‖ = 1, this tells us that |〈f, g〉| ≤ ‖f‖, so squaring both sides gives us
〈f, g〉2 ≤ ‖f‖2, which means that(∫ 1

0

f(t)dt

)2

≤
∫ 1

0

(f(t))2dt.

Note: We got a fairly sophisticated calculus result using only tools from algebra.
Pretty cool, no?

26. a0 = 0.

bk = 1
π

∫ π
−π f(t) sin(kt)dt = 1

π

(
−
∫ 0

−π sin(kt)dt+
∫ π

0
sin(kt)dt

)
= 2

π

∫ π
0

sin(kt)dt,

which is 0 if k is even and 4
πk

if k is odd.

ck = 0 for all k since the integrand is an odd function.

So, for example f6(t) = 4
π

sin(t) + 4
3π

sin(3t) + 4
5π

sin(5t). For a graph, go to
www.wolframalpha.com and type in “plot 4/pi sin(t)+4/(3 pi) sin(3t) + 4/(5
pi) sin(5t) on -pi < t < pi” (without the quotation marks). As we’ve mentioned,
the Fourier approximations are only valid on [−π, π]: try “plot 4/pi sin(t)+4/(3
pi) sin(3t) + 4/(5 pi) sin(5t)” to see what this approximation looks like outside
of this domain: as expected (since sin(kt) is periodic), it just repeats over and
over again.
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