Section 4.1

1. Not a subspace. Doesn't contain the zero polynomial and not closed under addition or scalar multiplication.
2. Is a subspace. If we write $p(t)=a+b t+c t^{2}$, then the condition $p(2)=0$ tells us that $a+2 b+4 c=0$, or $a=-2 b-4 c$, so that a general element is of the form $p(t)=(-2 b-4 c)+b t+c t^{2}=b(t-2)+c\left(t^{2}-4\right)$. Verify that $t-2, t^{2}-4$ are linearly independent, so that $t-2, t^{2}-4$ is a basis.
3. Is a subspace. If we write $p(t)=a+b t+c t^{2}$, then the condition $\int_{0}^{1} p(t) \mathrm{d} t=0$ tells us that $a+\frac{b}{2}+\frac{c}{3}=0$, or $a=-\frac{b}{2}-\frac{c}{3}$. Proceeding as above, a basis is $t-\frac{1}{2}$, $t^{2}-\frac{1}{3}$.
4. Not a subspace. It's not closed under multiplication by a negative scalar.
5. Let $E_{i j}$ be the matrix with a 1 in the (i, j) th position and 0 's elsewhere. Then the set of $E_{i j}$ with $1 \leq i \leq n$ and $1 \leq j \leq m$ form a basis of $\mathbb{R}^{n \times m}$, so that the dimension is $n m$.
6. Proceed as in $\# 2$.
7. A basis is $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Thus, $\operatorname{dim}(V)=3$.

Section 4.2

Note: While the problems don't ask you to, I recommend also finding kernels and images on $\# 3,7,20,29$, and 45 for practice.
3. Linear; not an isomorphism as $\operatorname{dim}\left(\mathbb{R}^{2 \times 2}\right) \neq \operatorname{dim}(\mathbb{R})$.
$\operatorname{ker}(T)=\operatorname{span}\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right\}$.
$\operatorname{im}(T)=\operatorname{span}\{1\}$.
7. Linear and an isomorphism. Since it's an isomorphism, $\operatorname{ker}(T)=\{0\}$ and $\operatorname{im}(T)=\mathbb{R}^{2 \times 2}$.
20. Linear and an isomorphism (in fact, it is its own inverse). Thus, $\operatorname{ker}(T)=\{0\}$ and $\operatorname{im}(T)=\mathbb{C}$.
29. Linear; not an isomorphism since all constant functions map to 0 (and hence the map is not invertible). Write $f(t)=a+b t+c t^{2}$, so $f^{\prime}(t)=b+2 c t$. To be in the kernel, $f^{\prime}(t)=0$ for all t, so $b=c=0$. Thus, $\operatorname{ker}(T)=\operatorname{span}\{1\}$. From the form of $f^{\prime}(t)$, we see that we can get all polynomials of degree ≤ 1 out, so $\operatorname{im}(T)=\operatorname{span}\{1, t\}=\mathcal{P}_{1}$.
45. Linear; not an isomorphism since the constant functions aren't in the image. $\operatorname{ker}(T)=\{0\}, \operatorname{im}(T)=\{f(t)$ in $\mathcal{P} \mid f(0)=0\}$. We haven't defined the span of infinitely many vectors, but if we had, then $\operatorname{im}(T)$ would be $\operatorname{span}\left\{t, t^{2}, t^{3}, t^{4}, \ldots\right\}$.

Section 4.3

5. Invertible; so an isomorphism.
6. Invertible; so an isomorphism.
7. $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Invertible; so an isomorphism.
8. Invertible; so an isomorphism.
(See the problems from Section 4.2 for some examples of non-isomorphisms.)
